Can Colly Handle WebSocket Connections for Real-Time Data?
Colly, the popular Go web scraping framework, is primarily designed for HTTP-based scraping and does not natively support WebSocket connections. Colly excels at crawling static web pages, handling forms, and managing HTTP sessions, but WebSocket connections require a different approach due to their persistent, bidirectional nature.
However, this doesn't mean you can't handle real-time data when building scrapers with Go. This article explores Colly's limitations regarding WebSockets and provides practical alternatives for real-time data collection.
Understanding Colly's HTTP-Only Architecture
Colly is built around Go's net/http
package and focuses on traditional HTTP request-response cycles. Its core features include:
- HTTP GET/POST requests
- Cookie management
- Rate limiting
- Concurrent crawling
- HTML parsing with goquery
The framework's architecture doesn't include WebSocket protocol support, which operates over a persistent TCP connection rather than discrete HTTP requests.
Why WebSockets Aren't Supported in Colly
WebSockets require:
- Protocol Upgrade: Converting from HTTP to WebSocket protocol
- Persistent Connections: Maintaining long-lived connections
- Bidirectional Communication: Handling both incoming and outgoing messages
- Event-Driven Architecture: Processing real-time events as they arrive
These requirements don't align with Colly's request-based model, which is optimized for crawling multiple pages efficiently.
Alternative Approaches for Real-Time Data with Go
1. Using Gorilla WebSocket with Colly
You can combine Colly for initial page discovery with the Gorilla WebSocket library for real-time connections:
package main
import (
"log"
"net/url"
"os"
"os/signal"
"time"
"github.com/gocolly/colly/v2"
"github.com/gorilla/websocket"
)
func main() {
// Use Colly to discover WebSocket endpoints
c := colly.NewCollector()
var wsEndpoints []string
c.OnHTML("script", func(e *colly.HTMLElement) {
// Look for WebSocket URLs in JavaScript
if contains(e.Text, "ws://") || contains(e.Text, "wss://") {
// Extract WebSocket URL logic here
wsEndpoints = append(wsEndpoints, extractWSURL(e.Text))
}
})
c.Visit("https://example.com")
// Connect to discovered WebSocket endpoints
for _, endpoint := range wsEndpoints {
go connectWebSocket(endpoint)
}
// Keep program running
interrupt := make(chan os.Signal, 1)
signal.Notify(interrupt, os.Interrupt)
<-interrupt
}
func connectWebSocket(wsURL string) {
u, _ := url.Parse(wsURL)
conn, _, err := websocket.DefaultDialer.Dial(u.String(), nil)
if err != nil {
log.Fatal("dial:", err)
}
defer conn.Close()
// Handle incoming messages
for {
_, message, err := conn.ReadMessage()
if err != nil {
log.Println("read:", err)
return
}
log.Printf("recv: %s", message)
// Process real-time data here
processRealtimeData(message)
}
}
func processRealtimeData(data []byte) {
// Your data processing logic
log.Printf("Processing: %s", string(data))
}
func extractWSURL(script string) string {
// Implementation to extract WebSocket URL from JavaScript
return "wss://example.com/websocket"
}
func contains(s, substr string) bool {
return len(s) > 0 && len(substr) > 0 &&
len(s) >= len(substr) &&
s != substr &&
s[0:len(substr)] == substr ||
(len(s) > len(substr) && contains(s[1:], substr))
}
2. Using Chrome DevTools Protocol (CDP)
For JavaScript-heavy applications, you can use Chrome DevTools Protocol to intercept WebSocket traffic:
package main
import (
"context"
"encoding/json"
"log"
"time"
"github.com/chromedp/cdproto/network"
"github.com/chromedp/cdproto/runtime"
"github.com/chromedp/chromedp"
)
func main() {
// Create context
ctx, cancel := chromedp.NewContext(context.Background())
defer cancel()
// Set up WebSocket message listener
chromedp.ListenTarget(ctx, func(ev interface{}) {
switch ev := ev.(type) {
case *network.EventWebSocketFrameReceived:
log.Printf("WebSocket message received: %s", ev.Response.PayloadData)
// Process the real-time data
processWebSocketMessage(ev.Response.PayloadData)
case *network.EventWebSocketFrameSent:
log.Printf("WebSocket message sent: %s", ev.Request.PayloadData)
}
})
// Enable network events
err := chromedp.Run(ctx,
network.Enable(),
chromedp.Navigate("https://example.com"),
chromedp.Sleep(10*time.Second), // Wait for WebSocket connections
)
if err != nil {
log.Fatal(err)
}
}
func processWebSocketMessage(data string) {
var message map[string]interface{}
if err := json.Unmarshal([]byte(data), &message); err == nil {
log.Printf("Parsed message: %+v", message)
// Handle the real-time data according to your needs
}
}
3. Hybrid Approach: Colly + WebSocket Client
Create a comprehensive solution that uses Colly for initial discovery and a separate WebSocket client for real-time data:
package main
import (
"encoding/json"
"log"
"net/http"
"regexp"
"sync"
"github.com/gocolly/colly/v2"
"github.com/gorilla/websocket"
)
type ScrapingManager struct {
collector *colly.Collector
wsConnections map[string]*websocket.Conn
mu sync.RWMutex
}
func NewScrapingManager() *ScrapingManager {
c := colly.NewCollector()
sm := &ScrapingManager{
collector: c,
wsConnections: make(map[string]*websocket.Conn),
}
sm.setupCollyCallbacks()
return sm
}
func (sm *ScrapingManager) setupCollyCallbacks() {
// Extract WebSocket endpoints from HTML
sm.collector.OnHTML("script", func(e *colly.HTMLElement) {
wsURLs := sm.extractWebSocketURLs(e.Text)
for _, url := range wsURLs {
go sm.connectToWebSocket(url)
}
})
// Handle AJAX endpoints that might upgrade to WebSocket
sm.collector.OnHTML("[data-ws-endpoint]", func(e *colly.HTMLElement) {
wsURL := e.Attr("data-ws-endpoint")
if wsURL != "" {
go sm.connectToWebSocket(wsURL)
}
})
}
func (sm *ScrapingManager) extractWebSocketURLs(script string) []string {
wsRegex := regexp.MustCompile(`(wss?://[^\s"']+)`)
matches := wsRegex.FindAllString(script, -1)
return matches
}
func (sm *ScrapingManager) connectToWebSocket(wsURL string) {
header := http.Header{}
header.Set("User-Agent", "Mozilla/5.0 (compatible; Go-WebSocket-Client)")
conn, _, err := websocket.DefaultDialer.Dial(wsURL, header)
if err != nil {
log.Printf("Failed to connect to %s: %v", wsURL, err)
return
}
sm.mu.Lock()
sm.wsConnections[wsURL] = conn
sm.mu.Unlock()
log.Printf("Connected to WebSocket: %s", wsURL)
// Listen for messages
for {
_, message, err := conn.ReadMessage()
if err != nil {
log.Printf("WebSocket read error for %s: %v", wsURL, err)
sm.mu.Lock()
delete(sm.wsConnections, wsURL)
sm.mu.Unlock()
break
}
sm.handleRealtimeMessage(wsURL, message)
}
}
func (sm *ScrapingManager) handleRealtimeMessage(source string, data []byte) {
var message map[string]interface{}
if err := json.Unmarshal(data, &message); err == nil {
log.Printf("Real-time data from %s: %+v", source, message)
// Process the data according to your business logic
sm.processBusinessLogic(message)
}
}
func (sm *ScrapingManager) processBusinessLogic(data map[string]interface{}) {
// Implement your specific data processing logic here
// This could include:
// - Storing data in a database
// - Triggering alerts
// - Updating caches
// - Forwarding to other services
}
func (sm *ScrapingManager) StartScraping(url string) error {
return sm.collector.Visit(url)
}
func main() {
manager := NewScrapingManager()
if err := manager.StartScraping("https://example.com"); err != nil {
log.Fatal(err)
}
// Keep the program running to maintain WebSocket connections
select {}
}
When to Use WebSocket Alternatives
Consider WebSocket alternatives when you need:
- Live Financial Data: Stock prices, cryptocurrency rates
- Chat Applications: Real-time messaging systems
- Gaming Data: Live scores, player statistics
- IoT Monitoring: Sensor data streams
- Social Media Feeds: Live tweet streams, comments
Best Practices for Real-Time Scraping
1. Connection Management
type ConnectionManager struct {
connections map[string]*websocket.Conn
mu sync.RWMutex
maxRetries int
}
func (cm *ConnectionManager) handleConnection(url string) {
retries := 0
for retries < cm.maxRetries {
conn, err := cm.connect(url)
if err != nil {
retries++
time.Sleep(time.Duration(retries) * time.Second)
continue
}
cm.mu.Lock()
cm.connections[url] = conn
cm.mu.Unlock()
cm.listenForMessages(url, conn)
break
}
}
2. Rate Limiting and Backoff
func (sm *ScrapingManager) connectWithBackoff(wsURL string) {
backoff := time.Second
maxBackoff := time.Minute
for {
conn, _, err := websocket.DefaultDialer.Dial(wsURL, nil)
if err != nil {
log.Printf("Connection failed, retrying in %v: %v", backoff, err)
time.Sleep(backoff)
backoff *= 2
if backoff > maxBackoff {
backoff = maxBackoff
}
continue
}
backoff = time.Second // Reset on successful connection
sm.handleConnection(wsURL, conn)
break
}
}
Integrating with Node.js WebSocket Solutions
For more complex real-time scenarios, you might consider integrating Go-based Colly scrapers with Node.js WebSocket clients:
const WebSocket = require('ws');
const axios = require('axios');
class RealtimeScrapingManager {
constructor() {
this.wsConnections = new Map();
this.retryAttempts = 3;
}
async discoverWebSocketEndpoints(url) {
try {
const response = await axios.get(url);
const html = response.data;
// Extract WebSocket URLs from HTML
const wsRegex = /wss?:\/\/[^\s"']+/g;
const matches = html.match(wsRegex);
return matches || [];
} catch (error) {
console.error('Failed to discover WebSocket endpoints:', error);
return [];
}
}
connectToWebSocket(wsUrl) {
const ws = new WebSocket(wsUrl, {
headers: {
'User-Agent': 'Mozilla/5.0 (compatible; Node-WebSocket-Client)'
}
});
ws.on('open', () => {
console.log(`Connected to WebSocket: ${wsUrl}`);
this.wsConnections.set(wsUrl, ws);
});
ws.on('message', (data) => {
try {
const message = JSON.parse(data);
this.processRealtimeData(wsUrl, message);
} catch (error) {
console.log(`Raw message from ${wsUrl}:`, data.toString());
}
});
ws.on('error', (error) => {
console.error(`WebSocket error for ${wsUrl}:`, error);
});
ws.on('close', () => {
console.log(`WebSocket closed: ${wsUrl}`);
this.wsConnections.delete(wsUrl);
// Implement reconnection logic
setTimeout(() => {
this.connectToWebSocket(wsUrl);
}, 5000);
});
}
processRealtimeData(source, data) {
console.log(`Real-time data from ${source}:`, data);
// Process according to your business logic
this.handleBusinessLogic(data);
}
handleBusinessLogic(data) {
// Implement your specific data processing logic here
// - Store in database
// - Trigger alerts
// - Update caches
// - Forward to other services
}
async start(url) {
const endpoints = await this.discoverWebSocketEndpoints(url);
endpoints.forEach(endpoint => {
this.connectToWebSocket(endpoint);
});
}
}
// Usage
const manager = new RealtimeScrapingManager();
manager.start('https://example.com');
Monitoring and Debugging WebSocket Connections
When working with WebSocket connections alongside Colly, implement proper monitoring:
package main
import (
"fmt"
"sync"
"time"
)
type WebSocketMonitor struct {
connections map[string]*ConnectionStats
mu sync.RWMutex
}
type ConnectionStats struct {
URL string
ConnectedAt time.Time
MessagesReceived int64
LastMessageAt time.Time
Errors int64
}
func (wsm *WebSocketMonitor) RecordConnection(url string) {
wsm.mu.Lock()
defer wsm.mu.Unlock()
wsm.connections[url] = &ConnectionStats{
URL: url,
ConnectedAt: time.Now(),
}
}
func (wsm *WebSocketMonitor) RecordMessage(url string) {
wsm.mu.Lock()
defer wsm.mu.Unlock()
if stats, exists := wsm.connections[url]; exists {
stats.MessagesReceived++
stats.LastMessageAt = time.Now()
}
}
func (wsm *WebSocketMonitor) RecordError(url string) {
wsm.mu.Lock()
defer wsm.mu.Unlock()
if stats, exists := wsm.connections[url]; exists {
stats.Errors++
}
}
func (wsm *WebSocketMonitor) GetStats() map[string]*ConnectionStats {
wsm.mu.RLock()
defer wsm.mu.RUnlock()
result := make(map[string]*ConnectionStats)
for k, v := range wsm.connections {
result[k] = v
}
return result
}
func (wsm *WebSocketMonitor) PrintStats() {
stats := wsm.GetStats()
fmt.Println("WebSocket Connection Statistics:")
fmt.Println("================================")
for url, stat := range stats {
fmt.Printf("URL: %s\n", url)
fmt.Printf(" Connected: %s\n", stat.ConnectedAt.Format(time.RFC3339))
fmt.Printf(" Messages: %d\n", stat.MessagesReceived)
fmt.Printf(" Last Message: %s\n", stat.LastMessageAt.Format(time.RFC3339))
fmt.Printf(" Errors: %d\n", stat.Errors)
fmt.Println()
}
}
Conclusion
While Colly doesn't natively support WebSocket connections, you can effectively combine it with dedicated WebSocket libraries to create powerful real-time scraping solutions. Use Colly for initial page analysis and endpoint discovery, then implement WebSocket clients using libraries like Gorilla WebSocket or Chrome DevTools Protocol for real-time data collection.
For applications that require extensive JavaScript execution and WebSocket handling, consider how to handle AJAX requests using Puppeteer or explore how to monitor network requests in Puppeteer for more comprehensive browser automation solutions.
This hybrid approach gives you the best of both worlds: Colly's efficient HTTP crawling capabilities combined with robust real-time data collection through WebSocket connections.