Table of contents

Can I use Colly to monitor website changes over time?

Yes, Colly is an excellent choice for monitoring website changes over time. As a powerful Go-based web scraping framework, Colly provides the necessary tools to build robust website monitoring systems that can track content changes, detect updates, and trigger alerts when modifications occur.

How Website Monitoring Works with Colly

Website monitoring involves periodically scraping target websites, storing the collected data, and comparing new data with previously captured versions to identify changes. Colly's efficient architecture and built-in features make it ideal for this type of continuous monitoring.

Key Components of Website Monitoring

  1. Scheduled Scraping: Regular data collection at defined intervals
  2. Data Storage: Persistent storage of historical data for comparison
  3. Change Detection: Algorithms to identify differences between versions
  4. Alerting System: Notifications when changes are detected

Basic Website Monitor Implementation

Here's a fundamental implementation of a website monitor using Colly:

package main

import (
    "crypto/md5"
    "fmt"
    "log"
    "time"
    "encoding/hex"
    "database/sql"

    "github.com/gocolly/colly/v2"
    "github.com/gocolly/colly/v2/debug"
    _ "github.com/lib/pq"
)

type WebsiteMonitor struct {
    collector *colly.Collector
    db        *sql.DB
    targets   []MonitorTarget
}

type MonitorTarget struct {
    URL      string
    Selector string
    Name     string
}

type ContentSnapshot struct {
    URL       string
    Content   string
    Hash      string
    Timestamp time.Time
}

func NewWebsiteMonitor() *WebsiteMonitor {
    c := colly.NewCollector(
        colly.Debugger(&debug.LogDebugger{}),
    )

    // Configure rate limiting
    c.Limit(&colly.LimitRule{
        DomainGlob:  "*",
        Parallelism: 2,
        Delay:       1 * time.Second,
    })

    return &WebsiteMonitor{
        collector: c,
        targets:   make([]MonitorTarget, 0),
    }
}

func (wm *WebsiteMonitor) AddTarget(url, selector, name string) {
    wm.targets = append(wm.targets, MonitorTarget{
        URL:      url,
        Selector: selector,
        Name:     name,
    })
}

func (wm *WebsiteMonitor) Monitor() error {
    for _, target := range wm.targets {
        snapshot, err := wm.scrapeTarget(target)
        if err != nil {
            log.Printf("Error scraping %s: %v", target.URL, err)
            continue
        }

        changed, err := wm.detectChange(snapshot)
        if err != nil {
            log.Printf("Error detecting change for %s: %v", target.URL, err)
            continue
        }

        if changed {
            wm.handleChange(target, snapshot)
        }

        wm.saveSnapshot(snapshot)
    }

    return nil
}

func (wm *WebsiteMonitor) scrapeTarget(target MonitorTarget) (*ContentSnapshot, error) {
    var content string

    wm.collector.OnHTML(target.Selector, func(e *colly.HTMLElement) {
        content = e.Text
    })

    err := wm.collector.Visit(target.URL)
    if err != nil {
        return nil, err
    }

    hash := wm.generateHash(content)

    return &ContentSnapshot{
        URL:       target.URL,
        Content:   content,
        Hash:      hash,
        Timestamp: time.Now(),
    }, nil
}

func (wm *WebsiteMonitor) generateHash(content string) string {
    hasher := md5.New()
    hasher.Write([]byte(content))
    return hex.EncodeToString(hasher.Sum(nil))
}

func (wm *WebsiteMonitor) detectChange(snapshot *ContentSnapshot) (bool, error) {
    var lastHash string
    query := "SELECT hash FROM snapshots WHERE url = $1 ORDER BY timestamp DESC LIMIT 1"
    err := wm.db.QueryRow(query, snapshot.URL).Scan(&lastHash)

    if err == sql.ErrNoRows {
        // First time monitoring this URL
        return false, nil
    }

    if err != nil {
        return false, err
    }

    return snapshot.Hash != lastHash, nil
}

func (wm *WebsiteMonitor) handleChange(target MonitorTarget, snapshot *ContentSnapshot) {
    log.Printf("CHANGE DETECTED: %s (%s)", target.Name, target.URL)
    // Implement your notification logic here
    // Examples: send email, webhook, Slack notification, etc.
}

func (wm *WebsiteMonitor) saveSnapshot(snapshot *ContentSnapshot) error {
    query := `INSERT INTO snapshots (url, content, hash, timestamp) 
              VALUES ($1, $2, $3, $4)`

    _, err := wm.db.Exec(query, snapshot.URL, snapshot.Content, 
                        snapshot.Hash, snapshot.Timestamp)
    return err
}

func main() {
    monitor := NewWebsiteMonitor()

    // Add monitoring targets
    monitor.AddTarget("https://example.com", "h1", "Homepage Title")
    monitor.AddTarget("https://example.com/news", ".news-item", "Latest News")

    // Set up periodic monitoring
    ticker := time.NewTicker(5 * time.Minute)
    defer ticker.Stop()

    for {
        select {
        case <-ticker.C:
            monitor.Monitor()
        }
    }
}

Advanced Monitoring Features

Content-Specific Monitoring

Monitor specific elements or data types:

type AdvancedMonitor struct {
    *WebsiteMonitor
}

func (am *AdvancedMonitor) MonitorPrices(url string) error {
    var prices []float64

    am.collector.OnHTML(".price", func(e *colly.HTMLElement) {
        price := parsePrice(e.Text)
        prices = append(prices, price)
    })

    err := am.collector.Visit(url)
    if err != nil {
        return err
    }

    // Compare with previous prices
    return am.comparePrices(url, prices)
}

func (am *AdvancedMonitor) MonitorImageChanges(url string) error {
    var imageHashes []string

    am.collector.OnHTML("img", func(e *colly.HTMLElement) {
        src := e.Attr("src")
        hash := am.hashImageContent(src)
        imageHashes = append(imageHashes, hash)
    })

    return am.collector.Visit(url)
}

func (am *AdvancedMonitor) MonitorStructuredData(url string) error {
    var jsonLD string

    am.collector.OnHTML("script[type='application/ld+json']", func(e *colly.HTMLElement) {
        jsonLD = e.Text
    })

    err := am.collector.Visit(url)
    if err != nil {
        return err
    }

    return am.compareStructuredData(url, jsonLD)
}

Real-time Alerting System

Implement various notification methods:

type AlertManager struct {
    webhookURL  string
    emailConfig EmailConfig
}

type EmailConfig struct {
    SMTPHost string
    SMTPPort int
    Username string
    Password string
}

func (am *AlertManager) SendWebhook(change ChangeEvent) error {
    payload := map[string]interface{}{
        "url":       change.URL,
        "timestamp": change.Timestamp,
        "type":      change.Type,
        "details":   change.Details,
    }

    jsonPayload, _ := json.Marshal(payload)

    resp, err := http.Post(am.webhookURL, "application/json", 
                          bytes.NewBuffer(jsonPayload))
    if err != nil {
        return err
    }
    defer resp.Body.Close()

    return nil
}

func (am *AlertManager) SendEmail(change ChangeEvent) error {
    // Email notification implementation
    subject := fmt.Sprintf("Website Change Detected: %s", change.URL)
    body := fmt.Sprintf("Change detected at %s\nTimestamp: %s\nDetails: %s", 
                       change.URL, change.Timestamp, change.Details)

    // Use your preferred email library
    return nil
}

Database Schema for Change Tracking

Set up proper database tables to store monitoring data:

-- PostgreSQL schema
CREATE TABLE snapshots (
    id SERIAL PRIMARY KEY,
    url VARCHAR(2048) NOT NULL,
    content TEXT,
    hash VARCHAR(32) NOT NULL,
    timestamp TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    metadata JSONB
);

CREATE TABLE changes (
    id SERIAL PRIMARY KEY,
    url VARCHAR(2048) NOT NULL,
    change_type VARCHAR(50),
    old_hash VARCHAR(32),
    new_hash VARCHAR(32),
    diff_content TEXT,
    detected_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);

CREATE INDEX idx_snapshots_url_timestamp ON snapshots(url, timestamp DESC);
CREATE INDEX idx_changes_url_detected ON changes(url, detected_at DESC);

Monitoring Best Practices

1. Respect Rate Limits

// Configure appropriate delays
c.Limit(&colly.LimitRule{
    DomainGlob:  "*example.com*",
    Parallelism: 1,
    Delay:       30 * time.Second, // 30-second delay between requests
})

2. Handle Errors Gracefully

c.OnError(func(r *colly.Response, err error) {
    log.Printf("Request failed: %s - %v", r.Request.URL, err)

    // Implement retry logic
    if r.StatusCode == 429 {
        time.Sleep(60 * time.Second)
        r.Request.Retry()
    }
})

3. Monitor robots.txt Compliance

c.OnRequest(func(r *colly.Request) {
    // Check robots.txt before making requests
    if !isAllowedByRobots(r.URL.String()) {
        r.Abort()
    }
})

Deployment and Scaling

Docker Deployment

FROM golang:1.19-alpine AS builder

WORKDIR /app
COPY go.mod go.sum ./
RUN go mod download

COPY . .
RUN go build -o monitor main.go

FROM alpine:latest
RUN apk --no-cache add ca-certificates tzdata
WORKDIR /root/

COPY --from=builder /app/monitor ./

CMD ["./monitor"]

Kubernetes CronJob

apiVersion: batch/v1
kind: CronJob
metadata:
  name: website-monitor
spec:
  schedule: "*/5 * * * *"  # Run every 5 minutes
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: monitor
            image: website-monitor:latest
            env:
            - name: DATABASE_URL
              valueFrom:
                secretKeyRef:
                  name: monitor-secrets
                  key: database-url
          restartPolicy: OnFailure

Integration with External Services

For more complex monitoring scenarios, you might want to integrate with browser automation tools. While Colly excels at HTML parsing and HTTP requests, some dynamic content might require JavaScript execution capabilities that browser automation frameworks provide.

Performance Optimization

Concurrent Monitoring

func (wm *WebsiteMonitor) MonitorConcurrently() error {
    var wg sync.WaitGroup
    semaphore := make(chan struct{}, 10) // Limit concurrent operations

    for _, target := range wm.targets {
        wg.Add(1)
        go func(t MonitorTarget) {
            defer wg.Done()
            semaphore <- struct{}{}        // Acquire
            defer func() { <-semaphore }() // Release

            wm.monitorSingleTarget(t)
        }(target)
    }

    wg.Wait()
    return nil
}

Memory Management

func (wm *WebsiteMonitor) optimizeMemory() {
    // Clear collector cache periodically
    wm.collector.OnResponse(func(r *colly.Response) {
        if len(wm.collector.UserAgent) > 1000 {
            wm.collector = colly.NewCollector()
        }
    })
}

Conclusion

Colly provides an excellent foundation for building website monitoring systems. Its efficient HTTP handling, CSS selector support, and built-in rate limiting make it ideal for continuous monitoring tasks. By combining Colly with proper data storage, change detection algorithms, and alerting mechanisms, you can create robust monitoring solutions that scale with your needs.

The key to successful website monitoring with Colly lies in implementing proper error handling, respecting website policies, and designing efficient data comparison algorithms. Whether you're monitoring price changes, content updates, or structural modifications, Colly's flexibility allows you to build tailored solutions for your specific monitoring requirements.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon