What are the differences between Crawlee for Python and Crawlee for JavaScript?
Crawlee is available in both JavaScript (TypeScript) and Python implementations, each tailored to their respective ecosystems while maintaining similar core functionality. Understanding the differences between these two versions is crucial for choosing the right tool for your web scraping project.
Language and Ecosystem Fundamentals
JavaScript/TypeScript Version
The JavaScript version of Crawlee was the original implementation and is the most mature. It's written in TypeScript, providing excellent type safety and IDE support. The JavaScript ecosystem offers several advantages:
- Native async/await support: JavaScript's event loop makes it naturally suited for concurrent web scraping operations
- Large ecosystem: Access to thousands of npm packages for various scraping needs
- Browser automation integration: Seamless integration with Puppeteer and Playwright
- Active development: More frequent updates and feature additions
Python Version
The Python version of Crawlee is a port of the JavaScript version, adapted to Python's idioms and ecosystem:
- Pythonic syntax: Uses familiar Python patterns and conventions
- Type hints: Leverages Python's type hinting system for better code completion
- Scientific computing integration: Easy integration with data science libraries like pandas, NumPy
- Community familiarity: Appeals to Python developers and data scientists
Installation and Setup
JavaScript/TypeScript
# Install Crawlee with npm
npm install crawlee
# Or with yarn
yarn add crawlee
# Install with specific crawler type
npm install crawlee puppeteer
The JavaScript version requires Node.js 16 or higher and comes with TypeScript definitions built-in.
Python
# Install Crawlee for Python
pip install crawlee
# Install with specific crawler dependencies
pip install 'crawlee[playwright]'
pip install 'crawlee[beautifulsoup]'
The Python version requires Python 3.8 or higher and uses type hints for better IDE support.
API and Syntax Differences
Basic Crawler Setup
JavaScript/TypeScript:
import { PlaywrightCrawler } from 'crawlee';
const crawler = new PlaywrightCrawler({
requestHandler: async ({ page, request, enqueueLinks }) => {
const title = await page.title();
console.log(`Title: ${title} - URL: ${request.url}`);
// Enqueue all links found on the page
await enqueueLinks({
globs: ['https://example.com/**'],
});
},
maxRequestsPerCrawl: 100,
});
await crawler.run(['https://example.com']);
Python:
from crawlee.playwright_crawler import PlaywrightCrawler
async def request_handler(context):
page = context.page
request = context.request
title = await page.title()
print(f'Title: {title} - URL: {request.url}')
# Enqueue all links found on the page
await context.enqueue_links(
globs=['https://example.com/**']
)
crawler = PlaywrightCrawler(
request_handler=request_handler,
max_requests_per_crawl=100,
)
await crawler.run(['https://example.com'])
Configuration Options
Both versions support similar configuration options, but with syntax differences:
JavaScript:
const crawler = new CheerioCrawler({
requestHandler: async ({ $, request, enqueueLinks }) => {
// Handler logic
},
maxConcurrency: 50,
maxRequestsPerCrawl: 1000,
requestHandlerTimeoutSecs: 60,
maxRequestRetries: 3,
sessionPoolOptions: {
maxPoolSize: 100,
},
});
Python:
crawler = CheerioCrawler(
request_handler=request_handler,
max_concurrency=50,
max_requests_per_crawl=1000,
request_handler_timeout=60, # Note: different parameter name
max_request_retries=3,
session_pool_options={
'max_pool_size': 100,
},
)
Storage and Data Export
JavaScript Data Storage
import { Dataset } from 'crawlee';
const crawler = new PlaywrightCrawler({
requestHandler: async ({ page, request }) => {
const data = {
url: request.url,
title: await page.title(),
content: await page.content(),
};
// Push data to default dataset
await Dataset.pushData(data);
},
});
// Export data after crawling
await crawler.run(['https://example.com']);
const dataset = await Dataset.open();
const data = await dataset.getData();
console.log(data.items);
Python Data Storage
from crawlee.storages import Dataset
async def request_handler(context):
page = context.page
request = context.request
data = {
'url': request.url,
'title': await page.title(),
'content': await page.content(),
}
# Push data to default dataset
await context.push_data(data)
crawler = PlaywrightCrawler(request_handler=request_handler)
await crawler.run(['https://example.com'])
# Access stored data
dataset = await Dataset.open()
data = await dataset.get_data()
print(data.items)
Performance Considerations
JavaScript Performance
- Event-driven architecture: JavaScript's non-blocking I/O makes it highly efficient for concurrent requests
- Memory efficiency: Generally uses less memory for similar workloads
- Faster startup: Node.js typically starts faster than Python
- V8 optimization: Benefits from Google's highly optimized V8 engine
Python Performance
- GIL limitations: Python's Global Interpreter Lock can limit true parallelism in CPU-bound tasks
- AsyncIO overhead: Python's async implementation has more overhead compared to JavaScript
- Better for data processing: Excels when combined with data analysis libraries
- Scientific computing: Superior when integrating with machine learning pipelines
Browser Automation Support
Both versions support similar browser automation capabilities, but with slight differences:
JavaScript Browser Support
// Puppeteer integration
import { PuppeteerCrawler } from 'crawlee';
const crawler = new PuppeteerCrawler({
launchContext: {
launchOptions: {
headless: true,
args: ['--no-sandbox'],
},
},
requestHandler: async ({ page }) => {
// Wait for dynamic content
await page.waitForSelector('.dynamic-content');
const content = await page.$eval('.dynamic-content', el => el.textContent);
},
});
Python Browser Support
from crawlee.playwright_crawler import PlaywrightCrawler
crawler = PlaywrightCrawler(
launch_context={
'launch_options': {
'headless': True,
'args': ['--no-sandbox'],
},
},
request_handler=request_handler,
)
async def request_handler(context):
page = context.page
# Wait for dynamic content
await page.wait_for_selector('.dynamic-content')
content = await page.eval_on_selector('.dynamic-content', 'el => el.textContent')
Both implementations support handling browser sessions and complex browser automation scenarios.
Proxy and Session Management
JavaScript Proxy Configuration
import { ProxyConfiguration } from 'crawlee';
const proxyConfiguration = new ProxyConfiguration({
proxyUrls: [
'http://proxy1.example.com:8000',
'http://proxy2.example.com:8000',
],
});
const crawler = new PlaywrightCrawler({
proxyConfiguration,
useSessionPool: true,
sessionPoolOptions: {
sessionOptions: {
maxUsageCount: 50,
},
},
});
Python Proxy Configuration
from crawlee.proxy_configuration import ProxyConfiguration
proxy_configuration = ProxyConfiguration(
proxy_urls=[
'http://proxy1.example.com:8000',
'http://proxy2.example.com:8000',
],
)
crawler = PlaywrightCrawler(
proxy_configuration=proxy_configuration,
use_session_pool=True,
session_pool_options={
'session_options': {
'max_usage_count': 50,
},
},
)
Error Handling and Retries
JavaScript Error Handling
const crawler = new CheerioCrawler({
requestHandler: async ({ $, request }) => {
try {
// Scraping logic
} catch (error) {
console.error(`Error processing ${request.url}:`, error);
throw error; // Re-throw to trigger retry
}
},
failedRequestHandler: async ({ request, error }) => {
console.log(`Request ${request.url} failed: ${error.message}`);
},
maxRequestRetries: 3,
});
Python Error Handling
async def request_handler(context):
try:
# Scraping logic
pass
except Exception as error:
print(f'Error processing {context.request.url}: {error}')
raise # Re-throw to trigger retry
async def failed_request_handler(context):
print(f'Request {context.request.url} failed: {context.error}')
crawler = CheerioCrawler(
request_handler=request_handler,
failed_request_handler=failed_request_handler,
max_request_retries=3,
)
Feature Parity and Maturity
JavaScript (More Mature)
- AutoscaledPool: Advanced request queue management
- Fingerprint generation: Better bot detection avoidance
- Request interception: More granular control over network requests
- Plugin ecosystem: Larger collection of community plugins
- Documentation: More comprehensive and up-to-date
Python (Catching Up)
- Core functionality: Most essential features are implemented
- Pythonic patterns: Better integration with Python ecosystem
- Data science integration: Easier to combine with pandas, NumPy
- Growing community: Actively developing new features
- Type hints: Excellent IDE support through type annotations
When to Choose Each Version
Choose JavaScript/TypeScript When:
- Performance is critical: You need maximum concurrency and minimal overhead
- Browser automation focus: Heavy reliance on Puppeteer or Playwright
- Cutting-edge features: You want access to the latest Crawlee features
- Existing Node.js infrastructure: You're already working in a JavaScript environment
- Large-scale scraping: You need to handle thousands of concurrent requests
Choose Python When:
- Data science integration: You plan to analyze scraped data with pandas, scikit-learn
- Team expertise: Your team is more comfortable with Python
- Rapid prototyping: You want to quickly test scraping strategies
- ML pipelines: Integrating scraping with machine learning workflows
- Scientific computing: Working with numerical data or research applications
Best Practices for Each Implementation
JavaScript Best Practices
// Use TypeScript for type safety
import { PlaywrightCrawler, Dataset } from 'crawlee';
// Define types for scraped data
interface ProductData {
name: string;
price: number;
url: string;
}
const crawler = new PlaywrightCrawler({
requestHandler: async ({ page, request, log }) => {
// Use structured logging
log.info(`Processing ${request.url}`);
// Type-safe data extraction
const data: ProductData = {
name: await page.$eval('.product-name', el => el.textContent || ''),
price: parseFloat(await page.$eval('.price', el => el.textContent || '0')),
url: request.url,
};
await Dataset.pushData(data);
},
});
Python Best Practices
from crawlee.playwright_crawler import PlaywrightCrawler
from typing import TypedDict
import pandas as pd
# Define typed data structure
class ProductData(TypedDict):
name: str
price: float
url: str
async def request_handler(context):
page = context.page
request = context.request
log = context.log
# Use structured logging
log.info(f'Processing {request.url}')
# Type-safe data extraction
data: ProductData = {
'name': await page.eval_on_selector('.product-name', 'el => el.textContent') or '',
'price': float(await page.eval_on_selector('.price', 'el => el.textContent') or '0'),
'url': request.url,
}
await context.push_data(data)
# Easy pandas integration
crawler = PlaywrightCrawler(request_handler=request_handler)
await crawler.run(['https://example.com'])
# Convert to DataFrame for analysis
dataset = await Dataset.open()
data = await dataset.get_data()
df = pd.DataFrame(data.items)
Conclusion
Both Crawlee implementations provide powerful web scraping capabilities, and the choice largely depends on your project requirements and team expertise. The JavaScript version offers better performance and more mature features, while the Python version provides excellent integration with data science tools and a more familiar syntax for Python developers. Both versions continue to evolve, with the Python implementation steadily catching up to feature parity with JavaScript.
For most production web scraping applications requiring maximum performance and concurrency, the JavaScript version is recommended. For data science projects, rapid prototyping, or teams with strong Python expertise, the Python version is an excellent choice.