Can I Use Firecrawl to Scrape PDF Files?
Yes, Firecrawl can scrape PDF files and extract their content in markdown or structured format. Firecrawl's /scrape
endpoint supports PDF documents through its document parsing capabilities, making it easy to extract text, tables, and other structured data from PDF files without requiring separate PDF parsing libraries.
How Firecrawl Handles PDF Files
Firecrawl automatically detects and processes PDF files when you provide a URL pointing to a PDF document. The service handles the heavy lifting of PDF parsing, text extraction, and formatting conversion behind the scenes. This eliminates the need for managing complex PDF parsing libraries like PyPDF2, pdfplumber, or pdf.js in your application.
When Firecrawl processes a PDF, it:
- Downloads and parses the PDF document
- Extracts text content while preserving structure
- Converts tables and formatted data into markdown
- Returns clean, structured output ready for further processing
Basic PDF Scraping with Firecrawl
Python Example
Here's how to scrape a PDF file using Firecrawl's Python SDK:
from firecrawl import FirecrawlApp
# Initialize Firecrawl
app = FirecrawlApp(api_key='your_api_key_here')
# Scrape a PDF file
pdf_url = 'https://example.com/document.pdf'
result = app.scrape_url(pdf_url)
# Access the extracted content
print(result['markdown']) # PDF content in markdown format
print(result['metadata']) # Document metadata
JavaScript/Node.js Example
For JavaScript developers, here's the equivalent implementation:
import FirecrawlApp from '@mendable/firecrawl-js';
// Initialize Firecrawl
const app = new FirecrawlApp({ apiKey: 'your_api_key_here' });
// Scrape a PDF file
const pdfUrl = 'https://example.com/document.pdf';
async function scrapePDF() {
try {
const result = await app.scrapeUrl(pdfUrl);
// Access the extracted content
console.log(result.markdown); // PDF content in markdown format
console.log(result.metadata); // Document metadata
} catch (error) {
console.error('Error scraping PDF:', error);
}
}
scrapePDF();
Advanced PDF Scraping Options
Extracting Specific Data with Actions
Firecrawl supports custom actions for more precise data extraction from PDFs:
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key='your_api_key_here')
# Scrape with specific extraction schema
result = app.scrape_url(
'https://example.com/financial-report.pdf',
params={
'formats': ['markdown', 'html'],
'onlyMainContent': True
}
)
# Access different formats
markdown_content = result['markdown']
html_content = result['html']
Using LLM Extract for Structured Data
One of Firecrawl's most powerful features is its ability to extract structured data from PDFs using LLM-based extraction:
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key='your_api_key_here')
# Define extraction schema
schema = {
'type': 'object',
'properties': {
'title': {'type': 'string'},
'author': {'type': 'string'},
'publication_date': {'type': 'string'},
'summary': {'type': 'string'},
'key_findings': {
'type': 'array',
'items': {'type': 'string'}
}
}
}
# Extract structured data from PDF
result = app.scrape_url(
'https://example.com/research-paper.pdf',
params={
'formats': ['extract'],
'extract': {
'schema': schema
}
}
)
print(result['extract']) # Structured JSON data
JavaScript Structured Extraction
import FirecrawlApp from '@mendable/firecrawl-js';
const app = new FirecrawlApp({ apiKey: 'your_api_key_here' });
// Define extraction schema
const schema = {
type: 'object',
properties: {
title: { type: 'string' },
author: { type: 'string' },
sections: {
type: 'array',
items: {
type: 'object',
properties: {
heading: { type: 'string' },
content: { type: 'string' }
}
}
}
}
};
async function extractPDFData() {
const result = await app.scrapeUrl(
'https://example.com/document.pdf',
{
formats: ['extract'],
extract: { schema }
}
);
console.log(result.extract); // Structured JSON data
}
extractPDFData();
Handling Password-Protected PDFs
For password-protected PDF files, you'll need to ensure the PDF is accessible via a public URL or handle authentication separately. Firecrawl doesn't directly support password-protected PDFs, but you can:
- Use a proxy service to unlock the PDF first
- Store unlocked PDFs in a temporary accessible location
- Use authentication handling techniques if the PDF is behind a login wall
Batch Processing Multiple PDFs
When you need to scrape multiple PDF files, Firecrawl's batch processing capabilities can help:
from firecrawl import FirecrawlApp
import concurrent.futures
app = FirecrawlApp(api_key='your_api_key_here')
pdf_urls = [
'https://example.com/doc1.pdf',
'https://example.com/doc2.pdf',
'https://example.com/doc3.pdf',
]
def scrape_pdf(url):
try:
result = app.scrape_url(url)
return {
'url': url,
'content': result['markdown'],
'success': True
}
except Exception as e:
return {
'url': url,
'error': str(e),
'success': False
}
# Process PDFs in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
results = list(executor.map(scrape_pdf, pdf_urls))
# Process results
for result in results:
if result['success']:
print(f"Successfully scraped: {result['url']}")
else:
print(f"Failed to scrape {result['url']}: {result['error']}")
Best Practices for PDF Scraping with Firecrawl
1. Handle Timeouts Appropriately
Large PDF files may take longer to process. Set appropriate timeout values:
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key='your_api_key_here')
result = app.scrape_url(
'https://example.com/large-document.pdf',
params={
'timeout': 60000 # 60 seconds
}
)
Similar to handling timeouts in Puppeteer, it's important to set reasonable timeout values based on document size.
2. Validate Output Format
Always validate the extracted content before processing:
def validate_pdf_content(result):
if 'markdown' not in result:
raise ValueError("No markdown content extracted")
if len(result['markdown'].strip()) == 0:
raise ValueError("Extracted content is empty")
return True
result = app.scrape_url('https://example.com/doc.pdf')
if validate_pdf_content(result):
# Process content
process_content(result['markdown'])
3. Cache Results for Efficiency
PDF processing can be resource-intensive. Implement caching to avoid redundant API calls:
import hashlib
import json
from pathlib import Path
def get_cache_key(url):
return hashlib.md5(url.encode()).hexdigest()
def scrape_with_cache(url, cache_dir='./pdf_cache'):
cache_path = Path(cache_dir)
cache_path.mkdir(exist_ok=True)
cache_file = cache_path / f"{get_cache_key(url)}.json"
# Check cache
if cache_file.exists():
with open(cache_file, 'r') as f:
return json.load(f)
# Scrape and cache
result = app.scrape_url(url)
with open(cache_file, 'w') as f:
json.dump(result, f)
return result
4. Error Handling and Retries
Implement robust error handling for production use:
async function scrapePDFWithRetry(url, maxRetries = 3) {
let lastError;
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
const result = await app.scrapeUrl(url);
return result;
} catch (error) {
lastError = error;
console.log(`Attempt ${attempt} failed:`, error.message);
if (attempt < maxRetries) {
// Exponential backoff
await new Promise(resolve =>
setTimeout(resolve, Math.pow(2, attempt) * 1000)
);
}
}
}
throw new Error(`Failed after ${maxRetries} attempts: ${lastError.message}`);
}
Limitations and Considerations
File Size Limits
Firecrawl has reasonable file size limits for PDF processing. Very large PDFs (>100MB) may encounter timeout or processing limits. Consider:
- Splitting large PDFs before processing
- Increasing timeout values
- Processing pages individually if possible
Image-Based PDFs
PDFs containing scanned images (non-searchable text) may have limited extraction capabilities. Firecrawl works best with text-based PDFs. For image-based PDFs, you might need to:
- Use OCR preprocessing
- Combine Firecrawl with dedicated OCR services
- Extract images and process them separately
Complex Layouts
PDFs with complex multi-column layouts, embedded forms, or heavy formatting may not preserve exact visual structure in markdown output. The content will be extracted, but layout information might be simplified.
Comparing Firecrawl to Traditional PDF Libraries
Traditional Approach (PyPDF2)
import PyPDF2
with open('document.pdf', 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
Firecrawl Approach
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key='your_api_key_here')
result = app.scrape_url('https://example.com/document.pdf')
text = result['markdown']
Advantages of Firecrawl: - No need to manage PDF files locally - Better table extraction - Automatic formatting to markdown - Cloud-based processing (no local resources) - Handles complex PDF structures better
Use Cases for PDF Scraping with Firecrawl
- Research Paper Analysis: Extract titles, abstracts, and citations from academic papers
- Financial Report Processing: Parse quarterly reports and extract key metrics
- Invoice Data Extraction: Pull structured data from PDF invoices
- Legal Document Review: Extract clauses and terms from contracts
- Resume Parsing: Extract candidate information from PDF resumes
Alternative Solutions
While Firecrawl excels at PDF scraping, consider these alternatives for specific use cases:
- WebScraping.AI: Offers similar PDF extraction with additional AI-powered data extraction
- DocumentAI services: Specialized services for form extraction and OCR
- Apache Tika: Open-source option for various document formats
- Custom solutions: Using Puppeteer for file downloads combined with PDF.js
Conclusion
Firecrawl provides a robust, developer-friendly solution for scraping PDF files without the complexity of managing PDF parsing libraries. Its LLM-based extraction capabilities make it particularly powerful for extracting structured data from documents. While it has some limitations with very large files and image-based PDFs, it's an excellent choice for most PDF scraping use cases.
Whether you're building a document processing pipeline, analyzing research papers, or extracting data from business documents, Firecrawl's PDF scraping capabilities can significantly simplify your workflow while delivering reliable results.