Table of contents

How to Extract Google Search Autocomplete Suggestions

Google Search autocomplete suggestions are the predictive text completions that appear when you start typing in the search box. These suggestions provide valuable insights into popular search queries, trending topics, and user search behavior. This guide covers multiple methods to extract these suggestions programmatically.

Understanding Google Autocomplete

Google's autocomplete feature works by analyzing billions of searches to predict what users are likely searching for. The suggestions are generated dynamically based on:

  • Popular search queries
  • Geographic location
  • Search history
  • Current trends
  • Language preferences

The autocomplete data is served through Google's suggest API endpoint, which returns suggestions in JSON format.

Method 1: Using Google's Suggest API

The most straightforward approach is to use Google's suggest API directly. This method doesn't require complex web scraping and provides clean JSON responses.

Python Implementation

import requests
import json
from urllib.parse import quote

def get_google_suggestions(query, language='en', country='us'):
    """
    Extract Google autocomplete suggestions using the suggest API

    Args:
        query (str): The search term to get suggestions for
        language (str): Language code (default: 'en')
        country (str): Country code (default: 'us')

    Returns:
        list: List of suggestion strings
    """
    # Encode the query for URL
    encoded_query = quote(query)

    # Google suggest API endpoint
    url = f"http://suggestqueries.google.com/complete/search"

    params = {
        'client': 'firefox',  # or 'chrome', 'safari'
        'q': encoded_query,
        'hl': language,
        'gl': country,
        'output': 'firefox'  # Returns JSON format
    }

    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
    }

    try:
        response = requests.get(url, params=params, headers=headers, timeout=10)
        response.raise_for_status()

        # Parse JSON response
        data = response.json()

        # Extract suggestions from response
        if len(data) >= 2 and isinstance(data[1], list):
            return data[1]
        else:
            return []

    except requests.RequestException as e:
        print(f"Error fetching suggestions: {e}")
        return []
    except json.JSONDecodeError as e:
        print(f"Error parsing JSON response: {e}")
        return []

# Example usage
query = "web scraping"
suggestions = get_google_suggestions(query)

print(f"Autocomplete suggestions for '{query}':")
for i, suggestion in enumerate(suggestions, 1):
    print(f"{i}. {suggestion}")

JavaScript Implementation

async function getGoogleSuggestions(query, language = 'en', country = 'us') {
    /**
     * Extract Google autocomplete suggestions using the suggest API
     * 
     * @param {string} query - The search term to get suggestions for
     * @param {string} language - Language code (default: 'en')
     * @param {string} country - Country code (default: 'us')
     * @returns {Promise<Array>} Array of suggestion strings
     */

    const encodedQuery = encodeURIComponent(query);
    const url = 'http://suggestqueries.google.com/complete/search';

    const params = new URLSearchParams({
        client: 'firefox',
        q: encodedQuery,
        hl: language,
        gl: country,
        output: 'firefox'
    });

    const headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
    };

    try {
        const response = await fetch(`${url}?${params}`, {
            method: 'GET',
            headers: headers
        });

        if (!response.ok) {
            throw new Error(`HTTP error! status: ${response.status}`);
        }

        const data = await response.json();

        // Extract suggestions from response
        if (data.length >= 2 && Array.isArray(data[1])) {
            return data[1];
        } else {
            return [];
        }

    } catch (error) {
        console.error('Error fetching suggestions:', error);
        return [];
    }
}

// Example usage
(async () => {
    const query = 'web scraping';
    const suggestions = await getGoogleSuggestions(query);

    console.log(`Autocomplete suggestions for '${query}':`);
    suggestions.forEach((suggestion, index) => {
        console.log(`${index + 1}. ${suggestion}`);
    });
})();

Method 2: Browser Automation with Puppeteer

For more complex scenarios or when you need to interact with the actual Google interface, browser automation provides more control. This method is particularly useful when you need to handle dynamic content or complex user interactions.

Puppeteer Implementation

const puppeteer = require('puppeteer');

async function extractGoogleSuggestionsWithPuppeteer(query) {
    /**
     * Extract Google autocomplete suggestions using Puppeteer
     * 
     * @param {string} query - The search term to get suggestions for
     * @returns {Promise<Array>} Array of suggestion objects with text and links
     */

    const browser = await puppeteer.launch({
        headless: true,
        args: ['--no-sandbox', '--disable-setuid-sandbox']
    });

    try {
        const page = await browser.newPage();

        // Set user agent and viewport
        await page.setUserAgent('Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36');
        await page.setViewport({ width: 1366, height: 768 });

        // Navigate to Google
        await page.goto('https://www.google.com', { 
            waitUntil: 'networkidle2',
            timeout: 30000 
        });

        // Accept cookies if present
        try {
            await page.click('button[id="L2AGLb"]', { timeout: 3000 });
        } catch (e) {
            // Cookie button not found, continue
        }

        // Focus on search input and type query
        const searchSelector = 'input[name="q"]';
        await page.waitForSelector(searchSelector);
        await page.click(searchSelector);
        await page.type(searchSelector, query);

        // Wait for suggestions to appear
        const suggestionsSelector = 'ul[role="listbox"] li[role="presentation"]';
        await page.waitForSelector(suggestionsSelector, { timeout: 5000 });

        // Extract suggestions
        const suggestions = await page.evaluate(() => {
            const suggestionElements = document.querySelectorAll('ul[role="listbox"] li[role="presentation"]');
            const results = [];

            suggestionElements.forEach((element, index) => {
                const textElement = element.querySelector('div[role="option"] span');
                if (textElement) {
                    results.push({
                        text: textElement.textContent.trim(),
                        index: index + 1
                    });
                }
            });

            return results;
        });

        return suggestions;

    } catch (error) {
        console.error('Error extracting suggestions:', error);
        return [];
    } finally {
        await browser.close();
    }
}

// Example usage
(async () => {
    const query = 'machine learning';
    const suggestions = await extractGoogleSuggestionsWithPuppeteer(query);

    console.log(`Autocomplete suggestions for '${query}':`);
    suggestions.forEach(suggestion => {
        console.log(`${suggestion.index}. ${suggestion.text}`);
    });
})();

Method 3: Advanced Scraping with Session Management

For high-volume extraction or when you need to maintain consistent sessions, implementing proper session management becomes crucial. This approach is particularly useful when you need to handle browser sessions effectively.

Python with Session Management

import requests
import time
import random
from urllib.parse import quote

class GoogleSuggestScraper:
    def __init__(self):
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        })

    def get_suggestions_batch(self, queries, delay_range=(0.5, 2.0)):
        """
        Extract suggestions for multiple queries with rate limiting

        Args:
            queries (list): List of search terms
            delay_range (tuple): Min and max delay between requests

        Returns:
            dict: Dictionary mapping queries to their suggestions
        """
        results = {}

        for query in queries:
            try:
                suggestions = self._get_single_query_suggestions(query)
                results[query] = suggestions

                # Random delay to avoid rate limiting
                delay = random.uniform(delay_range[0], delay_range[1])
                time.sleep(delay)

            except Exception as e:
                print(f"Error processing query '{query}': {e}")
                results[query] = []

        return results

    def _get_single_query_suggestions(self, query):
        """Get suggestions for a single query"""
        encoded_query = quote(query)
        url = "http://suggestqueries.google.com/complete/search"

        params = {
            'client': 'firefox',
            'q': encoded_query,
            'output': 'firefox'
        }

        response = self.session.get(url, params=params, timeout=10)
        response.raise_for_status()

        data = response.json()
        return data[1] if len(data) >= 2 and isinstance(data[1], list) else []

# Example usage
scraper = GoogleSuggestScraper()
queries = ['python web scraping', 'javascript automation', 'data extraction']
results = scraper.get_suggestions_batch(queries)

for query, suggestions in results.items():
    print(f"\nSuggestions for '{query}':")
    for i, suggestion in enumerate(suggestions[:5], 1):
        print(f"  {i}. {suggestion}")

Handling Different Parameters and Localization

Google's suggest API supports various parameters for customization:

Available Parameters

def get_localized_suggestions(query, **kwargs):
    """
    Get suggestions with custom parameters

    Available parameters:
    - hl: Language (en, es, fr, de, etc.)
    - gl: Country (us, uk, ca, au, etc.)
    - client: Client type (firefox, chrome, safari)
    - output: Output format (firefox, chrome)
    """

    default_params = {
        'client': 'firefox',
        'output': 'firefox',
        'hl': 'en',
        'gl': 'us'
    }

    # Merge custom parameters
    params = {**default_params, **kwargs, 'q': query}

    url = "http://suggestqueries.google.com/complete/search"

    response = requests.get(url, params=params, timeout=10)
    data = response.json()

    return data[1] if len(data) >= 2 and isinstance(data[1], list) else []

# Examples with different localizations
english_suggestions = get_localized_suggestions("web scraping", hl='en', gl='us')
spanish_suggestions = get_localized_suggestions("web scraping", hl='es', gl='es')
french_suggestions = get_localized_suggestions("web scraping", hl='fr', gl='fr')

Error Handling and Best Practices

Robust Error Handling

import logging
from typing import List, Optional

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def safe_get_suggestions(query: str, max_retries: int = 3) -> Optional[List[str]]:
    """
    Safely extract suggestions with retry logic and comprehensive error handling
    """

    for attempt in range(max_retries):
        try:
            response = requests.get(
                "http://suggestqueries.google.com/complete/search",
                params={
                    'client': 'firefox',
                    'q': query,
                    'output': 'firefox'
                },
                headers={
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
                },
                timeout=10
            )

            if response.status_code == 200:
                data = response.json()
                suggestions = data[1] if len(data) >= 2 and isinstance(data[1], list) else []
                logger.info(f"Successfully extracted {len(suggestions)} suggestions for '{query}'")
                return suggestions
            else:
                logger.warning(f"HTTP {response.status_code} for query '{query}' (attempt {attempt + 1})")

        except requests.exceptions.Timeout:
            logger.warning(f"Timeout for query '{query}' (attempt {attempt + 1})")
        except requests.exceptions.RequestException as e:
            logger.error(f"Request error for query '{query}': {e} (attempt {attempt + 1})")
        except (json.JSONDecodeError, KeyError, IndexError) as e:
            logger.error(f"Data parsing error for query '{query}': {e} (attempt {attempt + 1})")

        if attempt < max_retries - 1:
            time.sleep(2 ** attempt)  # Exponential backoff

    logger.error(f"Failed to get suggestions for '{query}' after {max_retries} attempts")
    return None

Rate Limiting and Ethical Considerations

When extracting autocomplete suggestions at scale, it's important to implement proper rate limiting:

Rate Limiting Implementation

import time
from collections import deque

class RateLimiter:
    def __init__(self, max_requests_per_minute=30):
        self.max_requests = max_requests_per_minute
        self.requests = deque()

    def wait_if_needed(self):
        now = time.time()

        # Remove requests older than 1 minute
        while self.requests and now - self.requests[0] > 60:
            self.requests.popleft()

        # If we've made too many requests, wait
        if len(self.requests) >= self.max_requests:
            wait_time = 60 - (now - self.requests[0])
            if wait_time > 0:
                time.sleep(wait_time)

        self.requests.append(now)

# Usage with rate limiter
rate_limiter = RateLimiter(max_requests_per_minute=20)

def get_suggestions_with_rate_limit(query):
    rate_limiter.wait_if_needed()
    return get_google_suggestions(query)

Command Line Tool

Create a simple command-line tool for quick suggestion extraction:

#!/bin/bash
# save as google-suggest.sh

if [ $# -eq 0 ]; then
    echo "Usage: $0 'search query'"
    exit 1
fi

query="$1"
encoded_query=$(python3 -c "import urllib.parse; print(urllib.parse.quote('$query'))")

curl -s "http://suggestqueries.google.com/complete/search?client=firefox&q=${encoded_query}&output=firefox" \
    -H "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" \
    | python3 -c "
import sys, json
data = json.load(sys.stdin)
if len(data) >= 2 and isinstance(data[1], list):
    for i, suggestion in enumerate(data[1], 1):
        print(f'{i}. {suggestion}')
else:
    print('No suggestions found')
"

Make it executable and use:

chmod +x google-suggest.sh
./google-suggest.sh "python web scraping"

Conclusion

Extracting Google Search autocomplete suggestions can be accomplished through multiple approaches, each with its own advantages. The direct API method is the most efficient for simple use cases, while browser automation provides more flexibility for complex scenarios that require handling dynamic content and user interactions.

Key takeaways:

  • Use Google's suggest API for simple, efficient extraction
  • Implement proper error handling and rate limiting
  • Consider localization parameters for regional suggestions
  • Use browser automation for complex interaction scenarios
  • Always respect rate limits and implement ethical scraping practices

Remember to monitor your usage and implement appropriate delays between requests to avoid being blocked. For production applications, consider using professional web scraping services that handle rate limiting, proxy rotation, and other technical challenges automatically.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon