Table of contents

What are some alternatives to Html Agility Pack?

Html Agility Pack (HAP) is a popular .NET library for parsing and manipulating HTML documents, but several alternatives offer different features, better performance, or modern APIs. Here's a comprehensive overview of the best alternatives across different programming languages.

.NET Alternatives

1. AngleSharp ⭐ (Recommended)

Best for: Modern .NET applications requiring HTML5/CSS3 support

AngleSharp is the most popular modern alternative to HAP, offering full HTML5 and CSS3 compliance with a clean, async-first API.

Features: - Full HTML5 and CSS3 support - Async/await support - CSS selector queries - DOM manipulation - Better performance than HAP

using AngleSharp;
using AngleSharp.Html.Dom;

// Create configuration and context
var config = Configuration.Default.WithDefaultLoader();
var context = BrowsingContext.New(config);

// Load document from URL
var document = await context.OpenAsync("https://example.com");

// Query elements using CSS selectors
var titles = document.QuerySelectorAll("h1, h2, h3");
var links = document.QuerySelectorAll("a[href]")
    .Cast<IHtmlAnchorElement>()
    .Select(link => new { Text = link.TextContent, Url = link.Href });

// Extract specific data
var pageTitle = document.Title;
var metaDescription = document.QuerySelector("meta[name='description']")?.GetAttribute("content");

Installation: dotnet add package AngleSharp

2. CsQuery

Best for: Developers familiar with jQuery syntax

using CsQuery;

// Load from URL or HTML string
CQ dom = CQ.CreateFromUrl("https://example.com");
// or: CQ dom = CQ.Create(htmlString);

// jQuery-like syntax
var titles = dom["h1, h2, h3"];
var firstParagraph = dom["p"].First().Text();
var links = dom["a[href]"].Select(link => new {
    Text = dom[link].Text(),
    Url = dom[link].Attr("href")
});

Note: CsQuery is no longer actively maintained. Consider AngleSharp for new projects.

3. Fizzler (HAP Extension)

Best for: Existing HAP projects that need CSS selector support

using HtmlAgilityPack;
using Fizzler.Systems.HtmlAgilityPack;

var web = new HtmlWeb();
var document = web.Load("https://example.com");

// Use CSS selectors with HAP
var products = document.DocumentNode.QuerySelectorAll(".product-item");
var prices = document.DocumentNode.QuerySelectorAll(".price").Select(node => node.InnerText);
var images = document.DocumentNode.QuerySelectorAll("img[src]")
    .Select(img => img.GetAttributeValue("src", ""));

Installation: dotnet add package Fizzler.Systems.HtmlAgilityPack

4. System.Text.Json + Regular Expressions

Best for: Simple parsing tasks or performance-critical scenarios

using System.Text.Json;
using System.Text.RegularExpressions;

// For simple extraction tasks
var titlePattern = @"<title>(.*?)</title>";
var title = Regex.Match(html, titlePattern, RegexOptions.IgnoreCase).Groups[1].Value;

// For JSON-LD structured data
var jsonLdPattern = @"<script[^>]*type=[""']application/ld\+json[""'][^>]*>(.*?)</script>";
var jsonLdMatch = Regex.Match(html, jsonLdPattern, RegexOptions.Singleline | RegexOptions.IgnoreCase);
if (jsonLdMatch.Success)
{
    var structuredData = JsonSerializer.Deserialize<JsonElement>(jsonLdMatch.Groups[1].Value);
}

Python Alternatives

1. BeautifulSoup

Best for: Beginner-friendly HTML parsing with excellent documentation

from bs4 import BeautifulSoup
import requests

# Fetch and parse
response = requests.get('https://example.com')
soup = BeautifulSoup(response.content, 'html.parser')

# Extract data
titles = [title.get_text() for title in soup.find_all(['h1', 'h2', 'h3'])]
links = [{'text': a.get_text(), 'url': a.get('href')} 
         for a in soup.find_all('a', href=True)]

# CSS selectors
products = soup.select('.product-item')
prices = [price.get_text() for price in soup.select('.price')]

Installation: pip install beautifulsoup4 requests

2. lxml

Best for: High-performance parsing of large documents

from lxml import html, etree
import requests

# Parse HTML
response = requests.get('https://example.com')
tree = html.fromstring(response.content)

# XPath queries (more powerful than CSS selectors)
titles = tree.xpath('//h1/text() | //h2/text() | //h3/text()')
product_data = tree.xpath('//div[@class="product"]')

# Extract complex data structures
products = []
for product in product_data:
    name = product.xpath('.//h3/text()')[0] if product.xpath('.//h3/text()') else ''
    price = product.xpath('.//*[@class="price"]/text()')[0] if product.xpath('.//*[@class="price"]/text()') else ''
    products.append({'name': name, 'price': price})

Installation: pip install lxml requests

JavaScript/Node.js Alternatives

1. Cheerio

Best for: Server-side HTML parsing with jQuery-like syntax

const cheerio = require('cheerio');
const axios = require('axios');

// Fetch and parse
const response = await axios.get('https://example.com');
const $ = cheerio.load(response.data);

// jQuery-like syntax
const titles = $('h1, h2, h3').map((i, el) => $(el).text()).get();
const links = $('a[href]').map((i, el) => ({
    text: $(el).text(),
    url: $(el).attr('href')
})).get();

// Extract product data
const products = $('.product-item').map((i, el) => ({
    name: $(el).find('.product-name').text(),
    price: $(el).find('.price').text(),
    image: $(el).find('img').attr('src')
})).get();

Installation: npm install cheerio axios

2. Puppeteer/Playwright

Best for: JavaScript-rendered content and complex interactions

const puppeteer = require('puppeteer');

(async () => {
    const browser = await puppeteer.launch();
    const page = await browser.newPage();

    await page.goto('https://example.com');

    // Wait for dynamic content
    await page.waitForSelector('.product-list');

    // Extract data after JavaScript execution
    const products = await page.evaluate(() => {
        return Array.from(document.querySelectorAll('.product-item')).map(item => ({
            name: item.querySelector('.product-name')?.textContent,
            price: item.querySelector('.price')?.textContent,
            availability: item.querySelector('.stock-status')?.textContent
        }));
    });

    await browser.close();
})();

Installation: npm install puppeteer

Choosing the Right Alternative

| Use Case | Recommended Alternative | Reason | |----------|------------------------|---------| | Modern .NET applications | AngleSharp | HTML5 support, async API, active development | | Existing HAP projects | Fizzler | Minimal migration, CSS selectors | | Python web scraping | BeautifulSoup | Beginner-friendly, excellent documentation | | High-performance Python | lxml | Fastest parsing, XPath support | | Node.js applications | Cheerio | jQuery syntax, lightweight | | JavaScript-heavy sites | Puppeteer/Playwright | Full browser rendering | | Simple text extraction | Regular Expressions | Minimal dependencies, fastest |

Migration Tips from HAP

When migrating from Html Agility Pack:

  1. AngleSharp: Replace HtmlDocument.Load() with context.OpenAsync()
  2. Update selectors: Convert XPath to CSS selectors where possible
  3. Handle async: Most modern alternatives use async/await patterns
  4. Test thoroughly: Different parsers may handle malformed HTML differently

Choose your alternative based on your specific requirements: performance needs, language ecosystem, team expertise, and maintenance considerations.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon