Table of contents

How can I manage HTTP request ordering for dependent requests?

Managing HTTP request ordering is crucial when dealing with dependent requests in web scraping and API interactions. When one request depends on the response of another, proper coordination ensures data integrity and prevents race conditions. This article explores various strategies and implementation patterns for handling request dependencies effectively.

Understanding Request Dependencies

Request dependencies occur when: - Authentication tokens are needed before making subsequent requests - API responses contain URLs or IDs required for follow-up requests - Pagination requires sequential processing - Rate limiting necessitates controlled request timing - Data relationships require specific execution order

Sequential Request Processing

Python Implementation with requests

import requests
import time
from typing import List, Dict, Any

class SequentialRequester:
    def __init__(self, base_url: str, headers: Dict[str, str] = None):
        self.base_url = base_url
        self.session = requests.Session()
        if headers:
            self.session.headers.update(headers)

    def execute_sequential_requests(self, request_chain: List[Dict[str, Any]]) -> List[requests.Response]:
        """Execute requests in sequence, passing data between them"""
        responses = []
        context = {}

        for request_config in request_chain:
            # Build request URL with context data
            url = self.base_url + request_config['endpoint'].format(**context)

            # Prepare request parameters
            method = request_config.get('method', 'GET')
            params = request_config.get('params', {})
            data = request_config.get('data', {})

            # Format parameters with context
            params = {k: v.format(**context) if isinstance(v, str) else v 
                     for k, v in params.items()}

            # Execute request
            response = self.session.request(method, url, params=params, json=data)
            response.raise_for_status()
            responses.append(response)

            # Update context with response data
            if response.headers.get('content-type', '').startswith('application/json'):
                context.update(response.json())

            # Add delay if specified
            if 'delay' in request_config:
                time.sleep(request_config['delay'])

        return responses

# Usage example
requester = SequentialRequester('https://api.example.com')

request_chain = [
    {
        'endpoint': '/auth/login',
        'method': 'POST',
        'data': {'username': 'user', 'password': 'pass'}
    },
    {
        'endpoint': '/users/{user_id}/profile',
        'method': 'GET',
        'delay': 1
    },
    {
        'endpoint': '/users/{user_id}/orders',
        'method': 'GET'
    }
]

responses = requester.execute_sequential_requests(request_chain)

JavaScript Implementation with axios

class SequentialRequester {
    constructor(baseURL, defaultHeaders = {}) {
        this.baseURL = baseURL;
        this.defaultHeaders = defaultHeaders;
        this.context = {};
    }

    async executeSequentialRequests(requestChain) {
        const responses = [];

        for (const requestConfig of requestChain) {
            try {
                // Build request URL with context data
                const url = this.interpolateString(requestConfig.endpoint, this.context);

                // Prepare request configuration
                const axiosConfig = {
                    method: requestConfig.method || 'GET',
                    url: `${this.baseURL}${url}`,
                    headers: { ...this.defaultHeaders, ...requestConfig.headers },
                    params: this.interpolateObject(requestConfig.params || {}, this.context),
                    data: requestConfig.data || {}
                };

                // Execute request
                const response = await axios(axiosConfig);
                responses.push(response);

                // Update context with response data
                if (response.data && typeof response.data === 'object') {
                    Object.assign(this.context, response.data);
                }

                // Add delay if specified
                if (requestConfig.delay) {
                    await this.delay(requestConfig.delay);
                }

            } catch (error) {
                console.error(`Request failed: ${error.message}`);
                throw error;
            }
        }

        return responses;
    }

    interpolateString(str, context) {
        return str.replace(/\{(\w+)\}/g, (match, key) => context[key] || match);
    }

    interpolateObject(obj, context) {
        const result = {};
        for (const [key, value] of Object.entries(obj)) {
            result[key] = typeof value === 'string' 
                ? this.interpolateString(value, context)
                : value;
        }
        return result;
    }

    delay(ms) {
        return new Promise(resolve => setTimeout(resolve, ms));
    }
}

// Usage example
const requester = new SequentialRequester('https://api.example.com');

const requestChain = [
    {
        endpoint: '/auth/login',
        method: 'POST',
        data: { username: 'user', password: 'pass' }
    },
    {
        endpoint: '/users/{user_id}/profile',
        method: 'GET',
        delay: 1000
    },
    {
        endpoint: '/users/{user_id}/orders',
        method: 'GET'
    }
];

requester.executeSequentialRequests(requestChain)
    .then(responses => console.log('All requests completed'))
    .catch(error => console.error('Request chain failed:', error));

Advanced Dependency Management

Pipeline Pattern

from abc import ABC, abstractmethod
from typing import Any, Optional

class RequestStep(ABC):
    def __init__(self, name: str):
        self.name = name

    @abstractmethod
    async def execute(self, context: Dict[str, Any]) -> Dict[str, Any]:
        pass

class AuthenticationStep(RequestStep):
    def __init__(self, session: requests.Session):
        super().__init__('authentication')
        self.session = session

    async def execute(self, context: Dict[str, Any]) -> Dict[str, Any]:
        response = self.session.post('/auth/login', json={
            'username': context['username'],
            'password': context['password']
        })
        response.raise_for_status()

        auth_data = response.json()
        self.session.headers.update({
            'Authorization': f"Bearer {auth_data['token']}"
        })

        return {'token': auth_data['token'], 'user_id': auth_data['user_id']}

class DataFetchStep(RequestStep):
    def __init__(self, session: requests.Session, endpoint: str):
        super().__init__(f'fetch_{endpoint}')
        self.session = session
        self.endpoint = endpoint

    async def execute(self, context: Dict[str, Any]) -> Dict[str, Any]:
        url = self.endpoint.format(**context)
        response = self.session.get(url)
        response.raise_for_status()

        return response.json()

class RequestPipeline:
    def __init__(self):
        self.steps = []

    def add_step(self, step: RequestStep) -> 'RequestPipeline':
        self.steps.append(step)
        return self

    async def execute(self, initial_context: Dict[str, Any]) -> Dict[str, Any]:
        context = initial_context.copy()

        for step in self.steps:
            try:
                result = await step.execute(context)
                context.update(result)
                print(f"Completed step: {step.name}")
            except Exception as e:
                print(f"Step {step.name} failed: {e}")
                raise

        return context

# Usage
session = requests.Session()
pipeline = (RequestPipeline()
    .add_step(AuthenticationStep(session))
    .add_step(DataFetchStep(session, '/users/{user_id}/profile'))
    .add_step(DataFetchStep(session, '/users/{user_id}/orders')))

result = await pipeline.execute({
    'username': 'user',
    'password': 'pass'
})

Handling Complex Dependencies

Graph-Based Dependency Resolution

from collections import defaultdict, deque
from typing import Set, List

class DependencyGraph:
    def __init__(self):
        self.graph = defaultdict(list)  # adjacency list
        self.in_degree = defaultdict(int)
        self.requests = {}

    def add_request(self, request_id: str, request_config: Dict[str, Any], 
                   dependencies: List[str] = None):
        """Add a request with its dependencies"""
        self.requests[request_id] = request_config

        if dependencies:
            for dep in dependencies:
                self.graph[dep].append(request_id)
                self.in_degree[request_id] += 1
        else:
            # Ensure request is in in_degree dict
            self.in_degree.setdefault(request_id, 0)

    def get_execution_order(self) -> List[str]:
        """Return topologically sorted order of requests"""
        queue = deque([req for req, degree in self.in_degree.items() if degree == 0])
        execution_order = []

        while queue:
            current = queue.popleft()
            execution_order.append(current)

            for neighbor in self.graph[current]:
                self.in_degree[neighbor] -= 1
                if self.in_degree[neighbor] == 0:
                    queue.append(neighbor)

        if len(execution_order) != len(self.requests):
            raise ValueError("Circular dependency detected")

        return execution_order

    async def execute_all(self, session: requests.Session, context: Dict[str, Any]):
        """Execute all requests in dependency order"""
        execution_order = self.get_execution_order()
        results = {}

        for request_id in execution_order:
            config = self.requests[request_id]

            # Format URL and parameters with current context
            url = config['url'].format(**context)
            params = {k: v.format(**context) if isinstance(v, str) else v 
                     for k, v in config.get('params', {}).items()}

            # Execute request
            response = session.request(
                config.get('method', 'GET'),
                url,
                params=params,
                json=config.get('data')
            )
            response.raise_for_status()

            # Store result and update context
            results[request_id] = response.json()
            context.update(results[request_id])

            print(f"Completed request: {request_id}")

        return results

# Usage example
dep_graph = DependencyGraph()

# Define requests with dependencies
dep_graph.add_request('auth', {
    'url': '/auth/login',
    'method': 'POST',
    'data': {'username': 'user', 'password': 'pass'}
})

dep_graph.add_request('profile', {
    'url': '/users/{user_id}/profile',
    'method': 'GET'
}, dependencies=['auth'])

dep_graph.add_request('orders', {
    'url': '/users/{user_id}/orders',
    'method': 'GET'
}, dependencies=['auth'])

dep_graph.add_request('order_details', {
    'url': '/orders/{latest_order_id}/details',
    'method': 'GET'
}, dependencies=['orders'])

# Execute in proper order
session = requests.Session()
results = await dep_graph.execute_all(session, {})

Error Handling and Retry Strategies

import asyncio
from tenacity import retry, stop_after_attempt, wait_exponential

class RobustSequentialRequester:
    def __init__(self, session: requests.Session):
        self.session = session

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10)
    )
    async def execute_request_with_retry(self, request_config: Dict[str, Any], 
                                       context: Dict[str, Any]) -> requests.Response:
        """Execute a single request with retry logic"""
        url = request_config['url'].format(**context)

        response = self.session.request(
            request_config.get('method', 'GET'),
            url,
            params=request_config.get('params', {}),
            json=request_config.get('data')
        )

        # Check for rate limiting
        if response.status_code == 429:
            retry_after = int(response.headers.get('Retry-After', 60))
            await asyncio.sleep(retry_after)
            raise Exception("Rate limited, retrying...")

        response.raise_for_status()
        return response

    async def execute_with_fallback(self, request_chain: List[Dict[str, Any]], 
                                  context: Dict[str, Any]) -> List[requests.Response]:
        """Execute request chain with fallback strategies"""
        responses = []

        for i, request_config in enumerate(request_chain):
            try:
                response = await self.execute_request_with_retry(request_config, context)
                responses.append(response)

                # Update context
                if response.headers.get('content-type', '').startswith('application/json'):
                    context.update(response.json())

            except Exception as e:
                print(f"Request {i} failed: {e}")

                # Check if this request has a fallback
                if 'fallback' in request_config:
                    print(f"Attempting fallback for request {i}")
                    fallback_response = await self.execute_request_with_retry(
                        request_config['fallback'], context
                    )
                    responses.append(fallback_response)
                    context.update(fallback_response.json())
                else:
                    # If no fallback and request is critical, stop execution
                    if request_config.get('critical', False):
                        raise
                    # Otherwise, continue with empty response
                    responses.append(None)

        return responses

Best Practices

1. Design for Observability

import logging
from datetime import datetime

class ObservableRequester:
    def __init__(self, logger: logging.Logger = None):
        self.logger = logger or logging.getLogger(__name__)
        self.request_history = []

    def log_request(self, request_id: str, method: str, url: str, 
                   start_time: datetime, end_time: datetime, 
                   status_code: int, response_size: int):
        """Log detailed request information"""
        duration = (end_time - start_time).total_seconds()

        log_entry = {
            'request_id': request_id,
            'method': method,
            'url': url,
            'duration': duration,
            'status_code': status_code,
            'response_size': response_size,
            'timestamp': start_time.isoformat()
        }

        self.request_history.append(log_entry)
        self.logger.info(f"Request {request_id}: {method} {url} - "
                        f"{status_code} ({duration:.2f}s, {response_size} bytes)")

2. Resource Management

from contextlib import asynccontextmanager
import aiohttp

@asynccontextmanager
async def managed_session(connector_limit: int = 100):
    """Context manager for HTTP session with proper cleanup"""
    connector = aiohttp.TCPConnector(limit=connector_limit)
    session = aiohttp.ClientSession(connector=connector)

    try:
        yield session
    finally:
        await session.close()
        await connector.close()

# Usage
async def execute_dependent_requests():
    async with managed_session() as session:
        # Your request logic here
        pass

Request Ordering with cURL Commands

For testing and debugging request sequences, you can use cURL commands to verify your dependency logic:

# Step 1: Authenticate and capture token
TOKEN=$(curl -s -X POST "https://api.example.com/auth/login" \
  -H "Content-Type: application/json" \
  -d '{"username":"user","password":"pass"}' | \
  jq -r '.token')

# Step 2: Use token to fetch user profile
USER_ID=$(curl -s -X GET "https://api.example.com/profile" \
  -H "Authorization: Bearer $TOKEN" | \
  jq -r '.user_id')

# Step 3: Fetch user orders using user ID
curl -X GET "https://api.example.com/users/$USER_ID/orders" \
  -H "Authorization: Bearer $TOKEN"

Integration with Browser Automation

When working with complex web applications that require browser session management, you might need to coordinate HTTP requests with browser actions. For scenarios involving AJAX request handling, proper request ordering becomes even more critical to ensure all dynamic content loads correctly.

Rate Limiting and Request Coordination

Understanding HTTP rate limiting strategies is essential when managing dependent requests, as each request in your chain counts toward your rate limit. Implement proper delays and backoff strategies to maintain compliance while ensuring your request dependencies are resolved in the correct order.

Conclusion

Managing HTTP request ordering for dependent requests requires careful planning and robust implementation. Whether using sequential processing, pipeline patterns, or dependency graphs, the key is to maintain clear data flow, implement proper error handling, and design for observability. Choose the approach that best fits your specific use case complexity and scalability requirements.

Remember to always implement retry logic, respect rate limits, and maintain proper session management throughout your request chains. With these patterns and best practices, you can build reliable systems that handle complex request dependencies effectively.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon