Table of contents

Can HTTParty be used with WebSocket connections for real-time scraping?

No, HTTParty cannot be used with WebSocket connections because it's designed specifically for HTTP/HTTPS requests, not WebSocket protocols. HTTParty is a Ruby gem that simplifies HTTP requests, but WebSockets use a different protocol (ws:// or wss://) that requires persistent, bidirectional connections - something HTTParty doesn't support.

Understanding the Difference: HTTP vs WebSocket

HTTP Characteristics

  • Request-response model
  • Stateless connections
  • One-way communication initiated by client
  • Perfect for traditional web scraping

WebSocket Characteristics

  • Persistent, full-duplex connections
  • Stateful connections
  • Bidirectional real-time communication
  • Ideal for live data streams, chat applications, and real-time updates

Ruby Alternatives for WebSocket Scraping

1. websocket-driver Gem

The websocket-driver gem provides low-level WebSocket protocol implementation:

require 'websocket-driver'
require 'socket'

# Create a TCP socket connection
socket = TCPSocket.new('echo.websocket.org', 80)

# Create WebSocket driver
driver = WebSocket::Driver.client(socket)

# Set up event handlers
driver.on :open do |event|
  puts 'WebSocket connection opened'
  driver.text('Hello WebSocket!')
end

driver.on :message do |event|
  puts "Received: #{event.data}"
end

driver.on :close do |event|
  puts "Connection closed: #{event.code} #{event.reason}"
end

# Start the WebSocket handshake
driver.start

# Handle incoming data
Thread.new do
  while data = socket.read_nonblock(1024)
    driver.parse(data)
  end
rescue IO::WaitReadable
  retry
rescue EOFError
  driver.close
end

# Keep the connection alive
sleep(10)

2. faye-websocket Gem

Faye-websocket provides a higher-level interface for WebSocket connections:

require 'faye/websocket'
require 'eventmachine'

EM.run do
  ws = Faye::WebSocket::Client.new('wss://stream.example.com/live-data')

  ws.on :open do |event|
    puts 'WebSocket connected'

    # Send authentication or subscription message
    ws.send(JSON.generate({
      action: 'subscribe',
      channel: 'price-updates'
    }))
  end

  ws.on :message do |event|
    data = JSON.parse(event.data)
    puts "Real-time data: #{data}"

    # Process the scraped real-time data
    process_live_data(data)
  end

  ws.on :close do |event|
    puts "Connection closed: #{event.code}"
    EM.stop
  end

  ws.on :error do |event|
    puts "WebSocket error: #{event.message}"
  end
end

def process_live_data(data)
  # Store in database, trigger alerts, etc.
  puts "Processing: #{data['symbol']} - #{data['price']}"
end

3. websocket-client-simple Gem

For simpler WebSocket client implementation:

require 'websocket-client-simple'

ws = WebSocket::Client::Simple.connect 'wss://api.example.com/realtime'

ws.on :message do |msg|
  data = JSON.parse(msg.data)

  case data['type']
  when 'price_update'
    handle_price_update(data)
  when 'market_status'
    handle_market_status(data)
  end
end

ws.on :open do
  puts 'WebSocket connection established'

  # Subscribe to specific data streams
  ws.send(JSON.generate({
    method: 'subscribe',
    params: ['btcusdt@ticker', 'ethusdt@ticker']
  }))
end

ws.on :close do |e|
  puts "Connection closed: #{e}"
end

ws.on :error do |e|
  puts "Error: #{e}"
end

# Keep the script running
loop do
  sleep 1
end

Real-Time Scraping with Browser Automation

For JavaScript-heavy applications where WebSocket data is rendered in the browser, consider using browser automation tools that can handle dynamic content that loads after page load:

Using Selenium with Ruby

require 'selenium-webdriver'
require 'json'

options = Selenium::WebDriver::Chrome::Options.new
options.add_argument('--headless')

driver = Selenium::WebDriver.for :chrome, options: options

begin
  driver.navigate.to 'https://example.com/live-dashboard'

  # Wait for WebSocket connection to establish
  wait = Selenium::WebDriver::Wait.new(timeout: 10)
  wait.until { driver.execute_script("return window.webSocketReady") }

  # Continuously monitor for real-time updates
  previous_data = nil

  loop do
    # Extract current data from the page
    current_data = driver.execute_script("""
      return {
        prices: document.querySelectorAll('.price').map(el => el.textContent),
        timestamp: new Date().toISOString()
      }
    """)

    if current_data != previous_data
      puts "Data updated: #{current_data}"
      process_realtime_update(current_data)
      previous_data = current_data
    end

    sleep(0.5) # Check for updates every 500ms
  end
ensure
  driver.quit
end

Combining HTTParty with WebSocket Libraries

You can use HTTParty for initial authentication or configuration, then switch to WebSocket connections:

require 'httparty'
require 'faye/websocket'
require 'eventmachine'

class RealTimeDataScraper
  include HTTParty
  base_uri 'https://api.example.com'

  def initialize(api_key)
    @api_key = api_key
    @headers = { 'Authorization' => "Bearer #{api_key}" }
  end

  def authenticate
    response = self.class.post('/auth/token', 
      headers: @headers,
      body: { grant_type: 'client_credentials' }.to_json
    )

    response.parsed_response['access_token']
  end

  def start_websocket_stream
    token = authenticate

    EM.run do
      ws = Faye::WebSocket::Client.new(
        'wss://stream.example.com/v1/live',
        nil,
        { headers: { 'Authorization' => "Bearer #{token}" } }
      )

      ws.on :open do
        puts 'Authenticated WebSocket connection established'

        ws.send(JSON.generate({
          action: 'subscribe',
          channels: ['trades', 'orderbook']
        }))
      end

      ws.on :message do |event|
        handle_realtime_data(JSON.parse(event.data))
      end

      # Refresh token periodically
      EM.add_periodic_timer(3600) do
        new_token = authenticate
        ws.send(JSON.generate({
          action: 'auth',
          token: new_token
        }))
      end
    end
  end

  private

  def handle_realtime_data(data)
    case data['channel']
    when 'trades'
      process_trade_data(data['data'])
    when 'orderbook'
      process_orderbook_data(data['data'])
    end
  end
end

# Usage
scraper = RealTimeDataScraper.new(ENV['API_KEY'])
scraper.start_websocket_stream

Best Practices for Real-Time Scraping

1. Error Handling and Reconnection

class RobustWebSocketClient
  def initialize(url)
    @url = url
    @reconnect_attempts = 0
    @max_reconnect_attempts = 5
  end

  def connect
    EM.run do
      create_connection
    end
  end

  private

  def create_connection
    @ws = Faye::WebSocket::Client.new(@url)

    @ws.on :open do
      puts 'Connected successfully'
      @reconnect_attempts = 0
    end

    @ws.on :message do |event|
      process_message(event.data)
    end

    @ws.on :close do |event|
      puts "Connection closed: #{event.code}"
      reconnect_if_needed
    end

    @ws.on :error do |event|
      puts "Error: #{event.message}"
      reconnect_if_needed
    end
  end

  def reconnect_if_needed
    if @reconnect_attempts < @max_reconnect_attempts
      @reconnect_attempts += 1
      delay = [2 ** @reconnect_attempts, 30].min

      puts "Reconnecting in #{delay} seconds (attempt #{@reconnect_attempts})"

      EM.add_timer(delay) do
        create_connection
      end
    else
      puts "Max reconnection attempts reached"
      EM.stop
    end
  end
end

2. Rate Limiting and Throttling

class ThrottledWebSocketProcessor
  def initialize
    @message_queue = Queue.new
    @processing = false
    start_processor
  end

  def add_message(data)
    @message_queue << data
  end

  private

  def start_processor
    Thread.new do
      loop do
        message = @message_queue.pop
        process_message(message)
        sleep(0.1) # Throttle processing to 10 messages per second
      end
    end
  end

  def process_message(data)
    # Your message processing logic here
    puts "Processing: #{data}"
  end
end

Performance Considerations

Memory Management

  • Use streaming JSON parsing for large payloads
  • Implement message queues to prevent memory buildup
  • Monitor connection health and restart when necessary

Connection Efficiency

  • Implement connection pooling for multiple streams
  • Use compression when available
  • Handle network interruptions gracefully

When to Use WebSocket vs HTTParty

Use HTTParty when: - Scraping static content - Making periodic API calls - Fetching historical data - Working with REST APIs

Use WebSocket libraries when: - Real-time data streaming is required - Live updates are essential - Bidirectional communication is needed - Monitoring network requests in real-time

Conclusion

While HTTParty excels at HTTP-based web scraping, it cannot handle WebSocket connections. For real-time scraping scenarios, use dedicated WebSocket libraries like faye-websocket or websocket-driver. Consider combining HTTParty for initial setup and authentication with WebSocket libraries for the real-time data streaming portion of your scraping workflow.

The choice between tools depends on your specific use case: traditional request-response scraping versus real-time data monitoring. Both approaches have their place in a comprehensive web scraping strategy.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon