Can HTTParty be used with WebSocket connections for real-time scraping?
No, HTTParty cannot be used with WebSocket connections because it's designed specifically for HTTP/HTTPS requests, not WebSocket protocols. HTTParty is a Ruby gem that simplifies HTTP requests, but WebSockets use a different protocol (ws:// or wss://) that requires persistent, bidirectional connections - something HTTParty doesn't support.
Understanding the Difference: HTTP vs WebSocket
HTTP Characteristics
- Request-response model
- Stateless connections
- One-way communication initiated by client
- Perfect for traditional web scraping
WebSocket Characteristics
- Persistent, full-duplex connections
- Stateful connections
- Bidirectional real-time communication
- Ideal for live data streams, chat applications, and real-time updates
Ruby Alternatives for WebSocket Scraping
1. websocket-driver Gem
The websocket-driver
gem provides low-level WebSocket protocol implementation:
require 'websocket-driver'
require 'socket'
# Create a TCP socket connection
socket = TCPSocket.new('echo.websocket.org', 80)
# Create WebSocket driver
driver = WebSocket::Driver.client(socket)
# Set up event handlers
driver.on :open do |event|
puts 'WebSocket connection opened'
driver.text('Hello WebSocket!')
end
driver.on :message do |event|
puts "Received: #{event.data}"
end
driver.on :close do |event|
puts "Connection closed: #{event.code} #{event.reason}"
end
# Start the WebSocket handshake
driver.start
# Handle incoming data
Thread.new do
while data = socket.read_nonblock(1024)
driver.parse(data)
end
rescue IO::WaitReadable
retry
rescue EOFError
driver.close
end
# Keep the connection alive
sleep(10)
2. faye-websocket Gem
Faye-websocket provides a higher-level interface for WebSocket connections:
require 'faye/websocket'
require 'eventmachine'
EM.run do
ws = Faye::WebSocket::Client.new('wss://stream.example.com/live-data')
ws.on :open do |event|
puts 'WebSocket connected'
# Send authentication or subscription message
ws.send(JSON.generate({
action: 'subscribe',
channel: 'price-updates'
}))
end
ws.on :message do |event|
data = JSON.parse(event.data)
puts "Real-time data: #{data}"
# Process the scraped real-time data
process_live_data(data)
end
ws.on :close do |event|
puts "Connection closed: #{event.code}"
EM.stop
end
ws.on :error do |event|
puts "WebSocket error: #{event.message}"
end
end
def process_live_data(data)
# Store in database, trigger alerts, etc.
puts "Processing: #{data['symbol']} - #{data['price']}"
end
3. websocket-client-simple Gem
For simpler WebSocket client implementation:
require 'websocket-client-simple'
ws = WebSocket::Client::Simple.connect 'wss://api.example.com/realtime'
ws.on :message do |msg|
data = JSON.parse(msg.data)
case data['type']
when 'price_update'
handle_price_update(data)
when 'market_status'
handle_market_status(data)
end
end
ws.on :open do
puts 'WebSocket connection established'
# Subscribe to specific data streams
ws.send(JSON.generate({
method: 'subscribe',
params: ['btcusdt@ticker', 'ethusdt@ticker']
}))
end
ws.on :close do |e|
puts "Connection closed: #{e}"
end
ws.on :error do |e|
puts "Error: #{e}"
end
# Keep the script running
loop do
sleep 1
end
Real-Time Scraping with Browser Automation
For JavaScript-heavy applications where WebSocket data is rendered in the browser, consider using browser automation tools that can handle dynamic content that loads after page load:
Using Selenium with Ruby
require 'selenium-webdriver'
require 'json'
options = Selenium::WebDriver::Chrome::Options.new
options.add_argument('--headless')
driver = Selenium::WebDriver.for :chrome, options: options
begin
driver.navigate.to 'https://example.com/live-dashboard'
# Wait for WebSocket connection to establish
wait = Selenium::WebDriver::Wait.new(timeout: 10)
wait.until { driver.execute_script("return window.webSocketReady") }
# Continuously monitor for real-time updates
previous_data = nil
loop do
# Extract current data from the page
current_data = driver.execute_script("""
return {
prices: document.querySelectorAll('.price').map(el => el.textContent),
timestamp: new Date().toISOString()
}
""")
if current_data != previous_data
puts "Data updated: #{current_data}"
process_realtime_update(current_data)
previous_data = current_data
end
sleep(0.5) # Check for updates every 500ms
end
ensure
driver.quit
end
Combining HTTParty with WebSocket Libraries
You can use HTTParty for initial authentication or configuration, then switch to WebSocket connections:
require 'httparty'
require 'faye/websocket'
require 'eventmachine'
class RealTimeDataScraper
include HTTParty
base_uri 'https://api.example.com'
def initialize(api_key)
@api_key = api_key
@headers = { 'Authorization' => "Bearer #{api_key}" }
end
def authenticate
response = self.class.post('/auth/token',
headers: @headers,
body: { grant_type: 'client_credentials' }.to_json
)
response.parsed_response['access_token']
end
def start_websocket_stream
token = authenticate
EM.run do
ws = Faye::WebSocket::Client.new(
'wss://stream.example.com/v1/live',
nil,
{ headers: { 'Authorization' => "Bearer #{token}" } }
)
ws.on :open do
puts 'Authenticated WebSocket connection established'
ws.send(JSON.generate({
action: 'subscribe',
channels: ['trades', 'orderbook']
}))
end
ws.on :message do |event|
handle_realtime_data(JSON.parse(event.data))
end
# Refresh token periodically
EM.add_periodic_timer(3600) do
new_token = authenticate
ws.send(JSON.generate({
action: 'auth',
token: new_token
}))
end
end
end
private
def handle_realtime_data(data)
case data['channel']
when 'trades'
process_trade_data(data['data'])
when 'orderbook'
process_orderbook_data(data['data'])
end
end
end
# Usage
scraper = RealTimeDataScraper.new(ENV['API_KEY'])
scraper.start_websocket_stream
Best Practices for Real-Time Scraping
1. Error Handling and Reconnection
class RobustWebSocketClient
def initialize(url)
@url = url
@reconnect_attempts = 0
@max_reconnect_attempts = 5
end
def connect
EM.run do
create_connection
end
end
private
def create_connection
@ws = Faye::WebSocket::Client.new(@url)
@ws.on :open do
puts 'Connected successfully'
@reconnect_attempts = 0
end
@ws.on :message do |event|
process_message(event.data)
end
@ws.on :close do |event|
puts "Connection closed: #{event.code}"
reconnect_if_needed
end
@ws.on :error do |event|
puts "Error: #{event.message}"
reconnect_if_needed
end
end
def reconnect_if_needed
if @reconnect_attempts < @max_reconnect_attempts
@reconnect_attempts += 1
delay = [2 ** @reconnect_attempts, 30].min
puts "Reconnecting in #{delay} seconds (attempt #{@reconnect_attempts})"
EM.add_timer(delay) do
create_connection
end
else
puts "Max reconnection attempts reached"
EM.stop
end
end
end
2. Rate Limiting and Throttling
class ThrottledWebSocketProcessor
def initialize
@message_queue = Queue.new
@processing = false
start_processor
end
def add_message(data)
@message_queue << data
end
private
def start_processor
Thread.new do
loop do
message = @message_queue.pop
process_message(message)
sleep(0.1) # Throttle processing to 10 messages per second
end
end
end
def process_message(data)
# Your message processing logic here
puts "Processing: #{data}"
end
end
Performance Considerations
Memory Management
- Use streaming JSON parsing for large payloads
- Implement message queues to prevent memory buildup
- Monitor connection health and restart when necessary
Connection Efficiency
- Implement connection pooling for multiple streams
- Use compression when available
- Handle network interruptions gracefully
When to Use WebSocket vs HTTParty
Use HTTParty when: - Scraping static content - Making periodic API calls - Fetching historical data - Working with REST APIs
Use WebSocket libraries when: - Real-time data streaming is required - Live updates are essential - Bidirectional communication is needed - Monitoring network requests in real-time
Conclusion
While HTTParty excels at HTTP-based web scraping, it cannot handle WebSocket connections. For real-time scraping scenarios, use dedicated WebSocket libraries like faye-websocket
or websocket-driver
. Consider combining HTTParty for initial setup and authentication with WebSocket libraries for the real-time data streaming portion of your scraping workflow.
The choice between tools depends on your specific use case: traditional request-response scraping versus real-time data monitoring. Both approaches have their place in a comprehensive web scraping strategy.