Table of contents

How to Handle Websites That Block Requests from Cloud Providers

Many modern websites implement sophisticated anti-bot measures that specifically target requests originating from cloud providers like AWS, Google Cloud, Azure, and DigitalOcean. These blocks can severely impact web scraping operations running on cloud infrastructure. This comprehensive guide explores various strategies to overcome cloud provider blocking while maintaining ethical scraping practices.

Understanding Cloud Provider Detection

Websites detect cloud providers through several methods:

  • IP range analysis: Cloud providers use well-known IP ranges that are publicly documented
  • ASN (Autonomous System Number) filtering: Each provider has specific ASNs that can be identified
  • Geolocation inconsistencies: Cloud servers often have mismatched geographic metadata
  • Request patterns: Cloud-based scrapers often exhibit predictable traffic patterns
  • Browser fingerprinting: Headless browsers on cloud instances may lack certain characteristics

Strategy 1: Using Residential Proxies

The most effective approach is routing requests through residential proxy networks that use real user IP addresses.

JavaScript Implementation with Puppeteer

const puppeteer = require('puppeteer');

async function scrapeWithResidentialProxy() {
  const browser = await puppeteer.launch({
    headless: true,
    args: [
      '--proxy-server=residential-proxy.example.com:8080',
      '--no-sandbox',
      '--disable-setuid-sandbox'
    ]
  });

  const page = await browser.newPage();

  // Authenticate with proxy if required
  await page.authenticate({
    username: 'your-proxy-username',
    password: 'your-proxy-password'
  });

  // Set realistic user agent
  await page.setUserAgent('Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36');

  try {
    await page.goto('https://target-website.com', {
      waitUntil: 'networkidle0',
      timeout: 30000
    });

    const content = await page.content();
    console.log('Successfully scraped content');
    return content;
  } catch (error) {
    console.error('Scraping failed:', error);
  } finally {
    await browser.close();
  }
}

Python Implementation with Requests

import requests
from requests.auth import HTTPProxyAuth
import random
import time

class ResidentialProxyScraper:
    def __init__(self, proxy_list):
        self.proxy_list = proxy_list
        self.session = requests.Session()

    def get_random_proxy(self):
        return random.choice(self.proxy_list)

    def scrape_with_proxy(self, url):
        proxy_config = self.get_random_proxy()

        proxies = {
            'http': f"http://{proxy_config['username']}:{proxy_config['password']}@{proxy_config['host']}:{proxy_config['port']}",
            'https': f"http://{proxy_config['username']}:{proxy_config['password']}@{proxy_config['host']}:{proxy_config['port']}"
        }

        headers = {
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate',
            'Connection': 'keep-alive',
        }

        try:
            response = self.session.get(
                url,
                proxies=proxies,
                headers=headers,
                timeout=30,
                verify=True
            )

            if response.status_code == 200:
                return response.text
            else:
                print(f"Request failed with status: {response.status_code}")
                return None

        except requests.exceptions.RequestException as e:
            print(f"Proxy request failed: {e}")
            return None

# Usage example
proxy_list = [
    {
        'host': 'residential-proxy1.example.com',
        'port': 8080,
        'username': 'user1',
        'password': 'pass1'
    },
    {
        'host': 'residential-proxy2.example.com',
        'port': 8080,
        'username': 'user2',
        'password': 'pass2'
    }
]

scraper = ResidentialProxyScraper(proxy_list)
content = scraper.scrape_with_proxy('https://target-website.com')

Strategy 2: Advanced Browser Automation

Using sophisticated browser automation with proper stealth techniques can help bypass detection systems. When implementing browser session handling in Puppeteer, consider these advanced configurations:

Stealth Puppeteer Configuration

const puppeteer = require('puppeteer-extra');
const StealthPlugin = require('puppeteer-extra-plugin-stealth');

// Add stealth plugin
puppeteer.use(StealthPlugin());

async function stealthScrape(url) {
  const browser = await puppeteer.launch({
    headless: 'new',
    args: [
      '--no-sandbox',
      '--disable-setuid-sandbox',
      '--disable-dev-shm-usage',
      '--disable-accelerated-2d-canvas',
      '--no-first-run',
      '--no-zygote',
      '--disable-gpu',
      '--disable-features=VizDisplayCompositor'
    ]
  });

  const page = await browser.newPage();

  // Randomize viewport
  const viewports = [
    { width: 1366, height: 768 },
    { width: 1920, height: 1080 },
    { width: 1440, height: 900 }
  ];
  const viewport = viewports[Math.floor(Math.random() * viewports.length)];
  await page.setViewport(viewport);

  // Set random user agent
  const userAgents = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
  ];
  await page.setUserAgent(userAgents[Math.floor(Math.random() * userAgents.length)]);

  // Add realistic headers
  await page.setExtraHTTPHeaders({
    'Accept-Language': 'en-US,en;q=0.9',
    'Accept-Encoding': 'gzip, deflate, br',
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
    'Connection': 'keep-alive',
    'Upgrade-Insecure-Requests': '1'
  });

  // Simulate human behavior
  await page.evaluateOnNewDocument(() => {
    // Override webdriver detection
    Object.defineProperty(navigator, 'webdriver', {
      get: () => undefined,
    });

    // Override plugins length
    Object.defineProperty(navigator, 'plugins', {
      get: () => [1, 2, 3, 4, 5],
    });

    // Override languages
    Object.defineProperty(navigator, 'languages', {
      get: () => ['en-US', 'en'],
    });
  });

  try {
    // Navigate with realistic timing
    await page.goto(url, { 
      waitUntil: 'networkidle2',
      timeout: 30000 
    });

    // Add random delays to mimic human behavior
    await page.waitForTimeout(Math.random() * 3000 + 1000);

    const content = await page.content();
    return content;
  } finally {
    await browser.close();
  }
}

Strategy 3: Distributed Scraping Architecture

Implement a distributed system that rotates between multiple non-cloud servers or residential connections:

Node.js Distributed Scraper

const cluster = require('cluster');
const numCPUs = require('os').cpus().length;

class DistributedScraper {
  constructor(proxyPool) {
    this.proxyPool = proxyPool;
    this.requestQueue = [];
    this.workers = new Map();
  }

  async initializeCluster() {
    if (cluster.isMaster) {
      console.log(`Master ${process.pid} is running`);

      // Fork workers
      for (let i = 0; i < numCPUs; i++) {
        const worker = cluster.fork();
        this.workers.set(worker.id, {
          worker: worker,
          busy: false,
          proxy: this.proxyPool[i % this.proxyPool.length]
        });
      }

      cluster.on('exit', (worker, code, signal) => {
        console.log(`Worker ${worker.process.pid} died`);
        const newWorker = cluster.fork();
        this.workers.set(newWorker.id, {
          worker: newWorker,
          busy: false,
          proxy: this.proxyPool[newWorker.id % this.proxyPool.length]
        });
      });

    } else {
      // Worker process
      process.on('message', async (task) => {
        try {
          const result = await this.scrapeWithProxy(task.url, task.proxy);
          process.send({ id: task.id, result: result, error: null });
        } catch (error) {
          process.send({ id: task.id, result: null, error: error.message });
        }
      });
    }
  }

  async scrapeWithProxy(url, proxyConfig) {
    const puppeteer = require('puppeteer');

    const browser = await puppeteer.launch({
      headless: true,
      args: [
        `--proxy-server=${proxyConfig.host}:${proxyConfig.port}`,
        '--no-sandbox'
      ]
    });

    const page = await browser.newPage();

    if (proxyConfig.username && proxyConfig.password) {
      await page.authenticate({
        username: proxyConfig.username,
        password: proxyConfig.password
      });
    }

    try {
      await page.goto(url, { waitUntil: 'networkidle0' });
      const content = await page.content();
      return content;
    } finally {
      await browser.close();
    }
  }

  async addRequest(url) {
    return new Promise((resolve, reject) => {
      const requestId = Date.now() + Math.random();

      // Find available worker
      const availableWorker = Array.from(this.workers.values())
        .find(w => !w.busy);

      if (availableWorker) {
        availableWorker.busy = true;

        const timeoutId = setTimeout(() => {
          availableWorker.busy = false;
          reject(new Error('Request timeout'));
        }, 30000);

        availableWorker.worker.once('message', (result) => {
          clearTimeout(timeoutId);
          availableWorker.busy = false;

          if (result.error) {
            reject(new Error(result.error));
          } else {
            resolve(result.result);
          }
        });

        availableWorker.worker.send({
          id: requestId,
          url: url,
          proxy: availableWorker.proxy
        });
      } else {
        // Queue the request
        this.requestQueue.push({ url, resolve, reject });
      }
    });
  }
}

Strategy 4: Server Location Diversification

Deploy scrapers across different geographic regions and hosting providers:

Infrastructure Setup Commands

# Deploy to multiple regions using Docker
docker run -d --name scraper-us-east \
  -e REGION=us-east \
  -e PROXY_CONFIG=us-residential \
  your-scraper-image

docker run -d --name scraper-eu-west \
  -e REGION=eu-west \
  -e PROXY_CONFIG=eu-residential \
  your-scraper-image

docker run -d --name scraper-asia-pacific \
  -e REGION=asia-pacific \
  -e PROXY_CONFIG=ap-residential \
  your-scraper-image

# Use load balancer to distribute requests
nginx -s reload

Strategy 5: Request Pattern Randomization

Implement sophisticated request timing and pattern variations:

import asyncio
import aiohttp
import random
from datetime import datetime, timedelta

class SmartRequestScheduler:
    def __init__(self):
        self.request_history = []
        self.min_delay = 1
        self.max_delay = 10

    async def smart_delay(self):
        """Calculate intelligent delay based on recent request patterns"""
        now = datetime.now()

        # Remove old requests (older than 1 hour)
        self.request_history = [
            req for req in self.request_history 
            if now - req < timedelta(hours=1)
        ]

        # Calculate dynamic delay
        recent_requests = len([
            req for req in self.request_history 
            if now - req < timedelta(minutes=5)
        ])

        if recent_requests > 10:
            delay = random.uniform(15, 30)  # Slow down if too many recent requests
        elif recent_requests > 5:
            delay = random.uniform(5, 15)
        else:
            delay = random.uniform(self.min_delay, self.max_delay)

        await asyncio.sleep(delay)
        self.request_history.append(now)

    async def make_request(self, session, url, proxy=None):
        await self.smart_delay()

        headers = {
            'User-Agent': self.get_random_user_agent(),
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate',
            'Connection': 'keep-alive',
            'Cache-Control': 'max-age=0',
        }

        try:
            async with session.get(url, headers=headers, proxy=proxy) as response:
                return await response.text()
        except Exception as e:
            print(f"Request failed: {e}")
            return None

    def get_random_user_agent(self):
        user_agents = [
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36',
            'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36'
        ]
        return random.choice(user_agents)

Best Practices and Ethical Considerations

Respect Rate Limits

Always implement proper rate limiting and respect robots.txt files:

const fs = require('fs');
const robotsParser = require('robots-parser');

async function checkRobotsTxt(baseUrl, userAgent = '*') {
  try {
    const robotsUrl = new URL('/robots.txt', baseUrl).href;
    const response = await fetch(robotsUrl);
    const robotsTxt = await response.text();

    const robots = robotsParser(robotsUrl, robotsTxt);
    return robots.isAllowed(baseUrl, userAgent);
  } catch (error) {
    console.log('Could not fetch robots.txt, proceeding with caution');
    return true;
  }
}

Monitor Success Rates

Track your scraping success rates and adjust strategies accordingly:

class ScrapingMetrics:
    def __init__(self):
        self.success_count = 0
        self.failure_count = 0
        self.proxy_performance = {}

    def record_success(self, proxy_id=None):
        self.success_count += 1
        if proxy_id:
            self.proxy_performance.setdefault(proxy_id, {'success': 0, 'failure': 0})
            self.proxy_performance[proxy_id]['success'] += 1

    def record_failure(self, proxy_id=None):
        self.failure_count += 1
        if proxy_id:
            self.proxy_performance.setdefault(proxy_id, {'success': 0, 'failure': 0})
            self.proxy_performance[proxy_id]['failure'] += 1

    def get_success_rate(self):
        total = self.success_count + self.failure_count
        return self.success_count / total if total > 0 else 0

    def get_best_proxies(self, min_requests=10):
        best_proxies = []
        for proxy_id, stats in self.proxy_performance.items():
            total = stats['success'] + stats['failure']
            if total >= min_requests:
                success_rate = stats['success'] / total
                best_proxies.append((proxy_id, success_rate))

        return sorted(best_proxies, key=lambda x: x[1], reverse=True)

Conclusion

Handling websites that block cloud provider requests requires a multi-layered approach combining residential proxies, sophisticated browser automation, distributed architectures, and intelligent request patterns. The key is to make your scraping traffic indistinguishable from legitimate user behavior while respecting website terms of service and maintaining ethical scraping practices.

Remember to always test your solutions thoroughly, monitor success rates, and be prepared to adapt your strategy as websites update their detection mechanisms. When working with complex scenarios that require monitoring network requests in Puppeteer, these techniques become even more valuable for understanding and circumventing blocking mechanisms.

Success in bypassing cloud provider blocks often requires combining multiple strategies and continuously evolving your approach based on the specific requirements and detection methods of your target websites.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon