Table of contents

How Much Does It Cost to Use the ChatGPT API for Web Scraping?

The cost of using the ChatGPT API for web scraping varies significantly based on the model you choose, the volume of data processed, and how efficiently you structure your requests. Understanding the pricing structure is crucial for budgeting your web scraping projects effectively.

ChatGPT API Pricing Structure

OpenAI charges for API usage based on tokens—units of text that roughly correspond to 4 characters or 0.75 words in English. Both input tokens (your prompt and context) and output tokens (the model's response) are counted separately.

Current Pricing by Model (as of 2025)

| Model | Input Tokens (per 1M) | Output Tokens (per 1M) | |-------|----------------------|------------------------| | GPT-4o | $2.50 | $10.00 | | GPT-4o-mini | $0.15 | $0.60 | | GPT-4 Turbo | $10.00 | $30.00 | | GPT-3.5 Turbo | $0.50 | $1.50 |

For web scraping tasks, GPT-4o-mini typically offers the best cost-to-performance ratio, while GPT-4o provides superior accuracy for complex extraction tasks.

Cost Calculation for Web Scraping

The total cost depends on:

  1. HTML size: Larger pages consume more input tokens
  2. Extraction complexity: Complex schemas require more detailed prompts
  3. Response format: JSON outputs typically use fewer tokens than verbose text
  4. Model selection: Different models have different pricing tiers

Example Cost Calculation

Let's calculate the cost to scrape 1,000 product pages using GPT-4o-mini:

Assumptions: - Average HTML page size: 50 KB (compressed to ~12,500 tokens) - Prompt size: ~500 tokens - Output JSON: ~200 tokens

Cost per page: - Input: 13,000 tokens × $0.15 / 1,000,000 = $0.00195 - Output: 200 tokens × $0.60 / 1,000,000 = $0.00012 - Total per page: $0.00207

Cost for 1,000 pages: ~$2.07

Practical Python Example with Cost Tracking

Here's how to implement ChatGPT-powered web scraping with cost tracking:

import openai
import requests
from bs4 import BeautifulSoup
import tiktoken

class ChatGPTScraper:
    def __init__(self, api_key, model="gpt-4o-mini"):
        self.client = openai.OpenAI(api_key=api_key)
        self.model = model
        self.encoding = tiktoken.encoding_for_model(model)
        self.total_input_tokens = 0
        self.total_output_tokens = 0

        # Pricing per 1M tokens
        self.pricing = {
            "gpt-4o-mini": {"input": 0.15, "output": 0.60},
            "gpt-4o": {"input": 2.50, "output": 10.00},
            "gpt-3.5-turbo": {"input": 0.50, "output": 1.50}
        }

    def count_tokens(self, text):
        """Count tokens in a text string"""
        return len(self.encoding.encode(text))

    def extract_data(self, url, schema):
        """Extract structured data from a URL using ChatGPT"""
        # Fetch HTML content
        response = requests.get(url)
        html = response.text

        # Clean HTML (optional but recommended)
        soup = BeautifulSoup(html, 'html.parser')

        # Remove script and style elements
        for script in soup(["script", "style"]):
            script.decompose()

        cleaned_html = soup.get_text()

        # Create prompt
        prompt = f"""Extract the following information from this webpage:
{schema}

Return the data as JSON. Only include the requested fields.

HTML Content:
{cleaned_html[:10000]}  # Limit to first 10k chars to reduce costs
"""

        # Count input tokens
        input_tokens = self.count_tokens(prompt)

        # Make API call
        completion = self.client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a data extraction assistant. Return only valid JSON."},
                {"role": "user", "content": prompt}
            ],
            temperature=0,
            response_format={"type": "json_object"}
        )

        # Track usage
        output_tokens = completion.usage.completion_tokens
        self.total_input_tokens += input_tokens
        self.total_output_tokens += output_tokens

        return completion.choices[0].message.content

    def get_total_cost(self):
        """Calculate total cost based on usage"""
        pricing = self.pricing[self.model]
        input_cost = (self.total_input_tokens / 1_000_000) * pricing["input"]
        output_cost = (self.total_output_tokens / 1_000_000) * pricing["output"]
        return input_cost + output_cost

# Usage example
scraper = ChatGPTScraper(api_key="your-api-key", model="gpt-4o-mini")

schema = """
- product_name: string
- price: number
- rating: number
- availability: boolean
"""

# Scrape multiple URLs
urls = [
    "https://example.com/product1",
    "https://example.com/product2",
    "https://example.com/product3"
]

results = []
for url in urls:
    data = scraper.extract_data(url, schema)
    results.append(data)
    print(f"Scraped {url}")

print(f"\nTotal cost: ${scraper.get_total_cost():.4f}")
print(f"Input tokens: {scraper.total_input_tokens}")
print(f"Output tokens: {scraper.total_output_tokens}")

JavaScript/Node.js Example

import OpenAI from 'openai';
import axios from 'axios';
import * as cheerio from 'cheerio';
import { encoding_for_model } from 'tiktoken';

class ChatGPTScraper {
    constructor(apiKey, model = 'gpt-4o-mini') {
        this.client = new OpenAI({ apiKey });
        this.model = model;
        this.encoding = encoding_for_model(model);
        this.totalInputTokens = 0;
        this.totalOutputTokens = 0;

        this.pricing = {
            'gpt-4o-mini': { input: 0.15, output: 0.60 },
            'gpt-4o': { input: 2.50, output: 10.00 },
            'gpt-3.5-turbo': { input: 0.50, output: 1.50 }
        };
    }

    countTokens(text) {
        return this.encoding.encode(text).length;
    }

    async extractData(url, schema) {
        // Fetch HTML
        const response = await axios.get(url);
        const $ = cheerio.load(response.data);

        // Remove scripts and styles
        $('script, style').remove();
        const cleanedHtml = $('body').text().substring(0, 10000);

        const prompt = `Extract the following information from this webpage:
${schema}

Return the data as JSON. Only include the requested fields.

HTML Content:
${cleanedHtml}`;

        // Make API call
        const completion = await this.client.chat.completions.create({
            model: this.model,
            messages: [
                { role: 'system', content: 'You are a data extraction assistant. Return only valid JSON.' },
                { role: 'user', content: prompt }
            ],
            temperature: 0,
            response_format: { type: 'json_object' }
        });

        // Track usage
        this.totalInputTokens += completion.usage.prompt_tokens;
        this.totalOutputTokens += completion.usage.completion_tokens;

        return JSON.parse(completion.choices[0].message.content);
    }

    getTotalCost() {
        const pricing = this.pricing[this.model];
        const inputCost = (this.totalInputTokens / 1_000_000) * pricing.input;
        const outputCost = (this.totalOutputTokens / 1_000_000) * pricing.output;
        return inputCost + outputCost;
    }
}

// Usage
const scraper = new ChatGPTScraper('your-api-key', 'gpt-4o-mini');

const schema = `
- product_name: string
- price: number
- rating: number
`;

const urls = [
    'https://example.com/product1',
    'https://example.com/product2'
];

for (const url of urls) {
    const data = await scraper.extractData(url, schema);
    console.log(`Scraped ${url}:`, data);
}

console.log(`\nTotal cost: $${scraper.getTotalCost().toFixed(4)}`);

Cost Optimization Strategies

1. Reduce HTML Size

Before sending HTML to ChatGPT, clean and compress it:

from bs4 import BeautifulSoup

def clean_html(html):
    soup = BeautifulSoup(html, 'html.parser')

    # Remove unnecessary elements
    for tag in soup(['script', 'style', 'nav', 'footer', 'header']):
        tag.decompose()

    # Extract only main content
    main_content = soup.find('main') or soup.find('article') or soup.body

    return main_content.get_text(separator=' ', strip=True)

2. Use Targeted Extraction

Instead of sending entire pages, extract relevant sections first using traditional methods like handling AJAX requests with Puppeteer or CSS selectors:

# Extract only product information section
product_section = soup.select_one('.product-details')
prompt = f"Extract product data from: {product_section.get_text()}"

3. Batch Processing

Process multiple similar pages with a single API call:

prompt = f"""Extract product data from these 5 pages.
Return as an array of JSON objects.

Page 1: {html1}
Page 2: {html2}
...
"""

4. Choose the Right Model

  • GPT-4o-mini: Best for structured data extraction (80% cheaper than GPT-4o)
  • GPT-4o: Use for complex, unstructured content
  • GPT-3.5-turbo: Budget option for simple extraction tasks

5. Cache Results

Store extracted data to avoid re-scraping:

import redis

cache = redis.Redis()

def get_or_scrape(url, schema):
    cached = cache.get(url)
    if cached:
        return cached

    data = scraper.extract_data(url, schema)
    cache.setex(url, 86400, data)  # Cache for 24 hours
    return data

Comparing Costs with Traditional Web Scraping

Traditional web scraping (XPath/CSS selectors): - Development time: High (3-5 days per site) - Maintenance: Constant (breaks with layout changes) - Scalability: Low (site-specific) - Cost per page: ~$0.0001 (hosting + proxies)

ChatGPT API scraping: - Development time: Low (hours) - Maintenance: Minimal (adapts to changes) - Scalability: High (works across sites) - Cost per page: ~$0.002-0.005

For 10,000 pages/month: - Traditional: ~$100-200 (infrastructure + development) - ChatGPT API: ~$20-50 (API costs only)

When to Use ChatGPT API for Web Scraping

ChatGPT API is cost-effective when:

  1. Scraping diverse websites with different structures
  2. Extracting complex, unstructured data that requires interpretation
  3. Sites change frequently and maintenance costs are high
  4. Development time is limited
  5. Scaling to new sites without custom parsers

Avoid ChatGPT API when:

  1. Scraping millions of pages daily (costs add up)
  2. Simple, well-structured data (traditional methods are cheaper)
  3. Real-time scraping with millisecond latency requirements
  4. Working with sites that have stable, documented APIs

Monitoring and Budgeting

Set up cost alerts and monitoring:

class CostMonitor:
    def __init__(self, daily_budget):
        self.daily_budget = daily_budget
        self.daily_cost = 0

    def check_budget(self, cost):
        self.daily_cost += cost

        if self.daily_cost > self.daily_budget * 0.8:
            print(f"Warning: 80% of daily budget used")

        if self.daily_cost >= self.daily_budget:
            raise Exception("Daily budget exceeded")

        return True

monitor = CostMonitor(daily_budget=10.00)

Alternative: Hybrid Approach

Combine traditional scraping with ChatGPT for optimal costs. Use browser automation tools to extract structured sections, then use ChatGPT only for complex interpretation:

# Use Puppeteer/Selenium for navigation and extraction
product_html = puppeteer.get_product_section(url)

# Use ChatGPT only for complex fields
complex_description = chatgpt.extract({
    "html": product_html,
    "field": "features_list"
})

Conclusion

ChatGPT API costs for web scraping typically range from $0.002 to $0.01 per page depending on the model and optimization level. For most projects scraping 1,000-10,000 pages monthly, this translates to $2-100/month—often cheaper than developing and maintaining traditional scrapers.

The key to cost-effective ChatGPT web scraping is: - Using GPT-4o-mini for structured extraction - Cleaning and compressing HTML before sending - Caching results when possible - Monitoring token usage and setting budgets - Combining traditional methods with AI where appropriate

For production web scraping needs with predictable costs, consider using specialized web scraping APIs that offer flat-rate pricing and handle infrastructure complexity for you.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon