Table of contents

Can I use multiple LLM providers for web scraping to improve reliability?

Yes, you can and should use multiple LLM providers for web scraping to improve reliability, reduce costs, and avoid single points of failure. By implementing a multi-provider strategy, you can automatically fall back to alternative LLMs when one provider experiences downtime, rate limiting, or performance issues. This approach ensures continuous operation of your AI-powered web scraping workflows.

Using multiple LLM providers also allows you to optimize for different use cases—some models excel at structured data extraction while others are better at answering complex questions about webpage content. You can route requests to the most appropriate model based on task complexity, cost, or performance requirements.

Why Use Multiple LLM Providers?

1. Improved Reliability and Uptime

LLM APIs experience occasional outages, degraded performance, or unexpected downtime. By distributing requests across multiple providers, your scraping pipeline remains operational even when one service fails.

2. Rate Limit Management

Each provider has different rate limits. When you hit the limit with one provider, you can automatically route requests to another, maintaining consistent throughput.

3. Cost Optimization

Different providers have varying pricing structures. You can route simple extraction tasks to cheaper models and reserve expensive, high-capability models for complex operations.

4. Performance Optimization

Some models are faster but less accurate, while others are more precise but slower. Multi-provider setups let you balance speed and accuracy based on your needs.

5. Feature-Based Routing

Different LLMs have unique strengths—GPT-4 Vision for image analysis, Claude for large context windows, or specialized models for specific data types.

Available LLM Providers for Web Scraping

Here are the major LLM providers you can integrate:

OpenAI (GPT-4, GPT-3.5) - Best for: General-purpose extraction, JSON generation - Pricing: $0.01-0.03 per 1K tokens (input), $0.03-0.06 per 1K tokens (output) - Rate limits: Tier-based, 3-10,000 RPM

Anthropic (Claude) - Best for: Large documents, complex reasoning, LLM data extraction - Pricing: $0.003-0.015 per 1K tokens - Rate limits: 50-1,000 RPM depending on tier - Advantage: 200K token context window

Google (Gemini) - Best for: Multimodal content, video/image analysis - Pricing: Free tier available, $0.0005-0.002 per 1K tokens - Rate limits: 60-1,000 RPM

Cohere - Best for: Classification, semantic search - Pricing: Free tier, pay-as-you-go available - Rate limits: 100-10,000 RPM

DeepSeek - Best for: Cost-effective extraction - Pricing: Competitive pricing - Rate limits: Varies by plan

Implementation Strategies

1. Simple Fallback Pattern

The most basic approach: try the primary provider, fall back to secondary if it fails.

Python Example:

import anthropic
import openai
from typing import Optional

class MultiProviderLLM:
    def __init__(self, openai_key: str, anthropic_key: str):
        self.openai_key = openai_key
        self.anthropic_key = anthropic_key

    def extract_data(self, html_content: str, prompt: str) -> Optional[str]:
        """Try OpenAI first, fall back to Anthropic"""
        try:
            return self._call_openai(html_content, prompt)
        except Exception as e:
            print(f"OpenAI failed: {e}, trying Anthropic...")
            try:
                return self._call_anthropic(html_content, prompt)
            except Exception as e2:
                print(f"Anthropic also failed: {e2}")
                return None

    def _call_openai(self, html_content: str, prompt: str) -> str:
        """Call OpenAI GPT-4"""
        openai.api_key = self.openai_key

        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "Extract structured data from HTML."},
                {"role": "user", "content": f"{prompt}\n\nHTML:\n{html_content[:5000]}"}
            ],
            temperature=0,
            timeout=30
        )
        return response.choices[0].message.content

    def _call_anthropic(self, html_content: str, prompt: str) -> str:
        """Call Anthropic Claude"""
        client = anthropic.Anthropic(api_key=self.anthropic_key)

        message = client.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=1024,
            messages=[
                {
                    "role": "user",
                    "content": f"{prompt}\n\nHTML:\n{html_content[:5000]}"
                }
            ]
        )
        return message.content[0].text

# Usage
scraper = MultiProviderLLM(
    openai_key="sk-...",
    anthropic_key="sk-ant-..."
)

html = "<div class='product'><h1>Laptop</h1><span class='price'>$999</span></div>"
result = scraper.extract_data(html, "Extract the product name and price as JSON")
print(result)

JavaScript Example:

const OpenAI = require('openai');
const Anthropic = require('@anthropic-ai/sdk');

class MultiProviderLLM {
    constructor(openaiKey, anthropicKey) {
        this.openai = new OpenAI({ apiKey: openaiKey });
        this.anthropic = new Anthropic({ apiKey: anthropicKey });
    }

    async extractData(htmlContent, prompt) {
        try {
            return await this.callOpenAI(htmlContent, prompt);
        } catch (error) {
            console.log(`OpenAI failed: ${error.message}, trying Anthropic...`);
            try {
                return await this.callAnthropic(htmlContent, prompt);
            } catch (error2) {
                console.error(`Anthropic also failed: ${error2.message}`);
                return null;
            }
        }
    }

    async callOpenAI(htmlContent, prompt) {
        const response = await this.openai.chat.completions.create({
            model: 'gpt-4',
            messages: [
                { role: 'system', content: 'Extract structured data from HTML.' },
                { role: 'user', content: `${prompt}\n\nHTML:\n${htmlContent.slice(0, 5000)}` }
            ],
            temperature: 0,
            timeout: 30000
        });
        return response.choices[0].message.content;
    }

    async callAnthropic(htmlContent, prompt) {
        const message = await this.anthropic.messages.create({
            model: 'claude-3-5-sonnet-20241022',
            max_tokens: 1024,
            messages: [{
                role: 'user',
                content: `${prompt}\n\nHTML:\n${htmlContent.slice(0, 5000)}`
            }]
        });
        return message.content[0].text;
    }
}

// Usage
const scraper = new MultiProviderLLM('sk-...', 'sk-ant-...');
const html = "<div class='product'><h1>Laptop</h1><span class='price'>$999</span></div>";
scraper.extractData(html, 'Extract the product name and price as JSON')
    .then(result => console.log(result));

2. Round-Robin Load Distribution

Distribute requests evenly across providers to balance load and costs:

Python Example:

from itertools import cycle
from typing import List, Dict, Callable
import time

class RoundRobinLLM:
    def __init__(self, providers: List[Dict[str, Callable]]):
        """
        providers: List of dicts with 'name' and 'call' function
        Example: [
            {'name': 'openai', 'call': openai_function},
            {'name': 'anthropic', 'call': anthropic_function}
        ]
        """
        self.providers = cycle(providers)
        self.current_provider = next(self.providers)
        self.stats = {p['name']: {'calls': 0, 'errors': 0} for p in providers}

    def extract_data(self, html_content: str, prompt: str, max_retries: int = 3) -> str:
        """Round-robin through providers with retry logic"""
        attempts = 0
        errors = []

        while attempts < max_retries:
            provider = self.current_provider
            provider_name = provider['name']

            try:
                print(f"Attempt {attempts + 1}: Using {provider_name}")
                result = provider['call'](html_content, prompt)

                # Track success
                self.stats[provider_name]['calls'] += 1
                return result

            except Exception as e:
                print(f"{provider_name} failed: {e}")
                self.stats[provider_name]['errors'] += 1
                errors.append(f"{provider_name}: {str(e)}")

                # Move to next provider
                self.current_provider = next(self.providers)
                attempts += 1
                time.sleep(2 ** attempts)  # Exponential backoff

        raise Exception(f"All providers failed after {max_retries} attempts: {errors}")

    def get_statistics(self) -> Dict:
        """Get usage statistics for all providers"""
        return self.stats

# Define provider functions
def call_openai_provider(html: str, prompt: str) -> str:
    # OpenAI implementation
    pass

def call_anthropic_provider(html: str, prompt: str) -> str:
    # Anthropic implementation
    pass

def call_gemini_provider(html: str, prompt: str) -> str:
    # Google Gemini implementation
    pass

# Setup round-robin scraper
providers = [
    {'name': 'openai', 'call': call_openai_provider},
    {'name': 'anthropic', 'call': call_anthropic_provider},
    {'name': 'gemini', 'call': call_gemini_provider}
]

scraper = RoundRobinLLM(providers)

# Scrape multiple pages - requests distributed evenly
urls = ['https://example.com/page1', 'https://example.com/page2', 'https://example.com/page3']
for url in urls:
    html = fetch_page(url)  # Your scraping function
    result = scraper.extract_data(html, "Extract product information")
    print(result)

print("Statistics:", scraper.get_statistics())

3. Smart Routing Based on Task Type

Route requests to the most appropriate provider based on task complexity or content type:

Python Example:

import json
from enum import Enum

class TaskType(Enum):
    SIMPLE_EXTRACTION = "simple"
    COMPLEX_REASONING = "complex"
    LARGE_DOCUMENT = "large"
    IMAGE_ANALYSIS = "image"

class SmartRoutingLLM:
    def __init__(self, api_keys: Dict[str, str]):
        self.keys = api_keys
        # Define which provider is best for each task type
        self.routing_map = {
            TaskType.SIMPLE_EXTRACTION: 'gemini',  # Fast and cheap
            TaskType.COMPLEX_REASONING: 'gpt4',     # Most capable
            TaskType.LARGE_DOCUMENT: 'claude',      # Large context window
            TaskType.IMAGE_ANALYSIS: 'gpt4_vision'  # Vision capabilities
        }

    def extract_data(self, content: str, prompt: str, task_type: TaskType) -> str:
        """Route to appropriate provider based on task type"""
        primary_provider = self.routing_map[task_type]

        try:
            return self._call_provider(primary_provider, content, prompt)
        except Exception as e:
            print(f"{primary_provider} failed, trying fallback...")
            # Fallback to GPT-4 for most tasks
            fallback = 'gpt4' if primary_provider != 'gpt4' else 'claude'
            return self._call_provider(fallback, content, prompt)

    def _call_provider(self, provider: str, content: str, prompt: str) -> str:
        """Call the specified provider"""
        if provider == 'gemini':
            return self._call_gemini(content, prompt)
        elif provider == 'gpt4':
            return self._call_gpt4(content, prompt)
        elif provider == 'claude':
            return self._call_claude(content, prompt)
        elif provider == 'gpt4_vision':
            return self._call_gpt4_vision(content, prompt)
        else:
            raise ValueError(f"Unknown provider: {provider}")

    def _call_gemini(self, content: str, prompt: str) -> str:
        """Google Gemini - fast and cheap for simple tasks"""
        import google.generativeai as genai

        genai.configure(api_key=self.keys['gemini'])
        model = genai.GenerativeModel('gemini-pro')

        response = model.generate_content(f"{prompt}\n\n{content[:5000]}")
        return response.text

    def _call_gpt4(self, content: str, prompt: str) -> str:
        """OpenAI GPT-4 - best for complex reasoning"""
        import openai

        openai.api_key = self.keys['openai']
        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=[{"role": "user", "content": f"{prompt}\n\n{content[:8000]}"}]
        )
        return response.choices[0].message.content

    def _call_claude(self, content: str, prompt: str) -> str:
        """Anthropic Claude - best for large documents"""
        import anthropic

        client = anthropic.Anthropic(api_key=self.keys['anthropic'])
        message = client.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=2048,
            messages=[{"role": "user", "content": f"{prompt}\n\n{content[:100000]}"}]
        )
        return message.content[0].text

    def _call_gpt4_vision(self, image_url: str, prompt: str) -> str:
        """GPT-4 Vision for image analysis"""
        import openai

        openai.api_key = self.keys['openai']
        response = openai.ChatCompletion.create(
            model="gpt-4-vision-preview",
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {"type": "image_url", "image_url": {"url": image_url}}
                ]
            }]
        )
        return response.choices[0].message.content

# Usage
api_keys = {
    'openai': 'sk-...',
    'anthropic': 'sk-ant-...',
    'gemini': 'AI...'
}

scraper = SmartRoutingLLM(api_keys)

# Simple extraction - routed to Gemini (cheap/fast)
simple_html = "<div><span class='price'>$99</span></div>"
price = scraper.extract_data(
    simple_html,
    "Extract the price",
    TaskType.SIMPLE_EXTRACTION
)

# Complex reasoning - routed to GPT-4
complex_html = fetch_large_product_page()
analysis = scraper.extract_data(
    complex_html,
    "Analyze the product reviews and summarize sentiment",
    TaskType.COMPLEX_REASONING
)

# Large document - routed to Claude
large_doc = fetch_full_article()  # 50K tokens
summary = scraper.extract_data(
    large_doc,
    "Extract all mentioned companies and their relationships",
    TaskType.LARGE_DOCUMENT
)

4. Health Monitoring and Circuit Breaker

Automatically disable unhealthy providers and route around failures:

Python Example:

import time
from datetime import datetime, timedelta
from typing import Dict, Optional

class ProviderHealthMonitor:
    def __init__(self, failure_threshold: int = 3, recovery_time: int = 300):
        """
        failure_threshold: Number of consecutive failures before circuit opens
        recovery_time: Seconds to wait before retrying failed provider
        """
        self.failure_threshold = failure_threshold
        self.recovery_time = recovery_time
        self.health_status = {}  # provider -> {'failures': int, 'disabled_until': datetime}

    def is_healthy(self, provider_name: str) -> bool:
        """Check if provider is healthy and available"""
        if provider_name not in self.health_status:
            return True

        status = self.health_status[provider_name]

        # Check if recovery period has passed
        if status.get('disabled_until'):
            if datetime.now() > status['disabled_until']:
                # Reset health status
                self.health_status[provider_name] = {'failures': 0, 'disabled_until': None}
                print(f"{provider_name} recovered, re-enabling")
                return True
            return False

        return status.get('failures', 0) < self.failure_threshold

    def record_success(self, provider_name: str):
        """Record successful call"""
        if provider_name in self.health_status:
            self.health_status[provider_name]['failures'] = 0

    def record_failure(self, provider_name: str):
        """Record failed call and potentially disable provider"""
        if provider_name not in self.health_status:
            self.health_status[provider_name] = {'failures': 0, 'disabled_until': None}

        self.health_status[provider_name]['failures'] += 1

        if self.health_status[provider_name]['failures'] >= self.failure_threshold:
            disabled_until = datetime.now() + timedelta(seconds=self.recovery_time)
            self.health_status[provider_name]['disabled_until'] = disabled_until
            print(f"{provider_name} disabled until {disabled_until} due to repeated failures")

    def get_status(self) -> Dict:
        """Get current health status of all providers"""
        return self.health_status

class ResilientMultiProviderLLM:
    def __init__(self, providers: Dict[str, Callable]):
        self.providers = providers
        self.health_monitor = ProviderHealthMonitor(failure_threshold=3, recovery_time=300)

    def extract_data(self, html_content: str, prompt: str) -> Optional[str]:
        """Try providers in order, skipping unhealthy ones"""
        healthy_providers = [
            (name, func) for name, func in self.providers.items()
            if self.health_monitor.is_healthy(name)
        ]

        if not healthy_providers:
            print("No healthy providers available!")
            return None

        for provider_name, provider_func in healthy_providers:
            try:
                print(f"Trying {provider_name}...")
                result = provider_func(html_content, prompt)

                # Record success
                self.health_monitor.record_success(provider_name)
                return result

            except Exception as e:
                print(f"{provider_name} failed: {e}")
                self.health_monitor.record_failure(provider_name)
                continue

        return None

    def get_health_status(self) -> Dict:
        """Get health status of all providers"""
        return self.health_monitor.get_status()

# Usage
providers = {
    'openai': call_openai_provider,
    'anthropic': call_anthropic_provider,
    'gemini': call_gemini_provider
}

scraper = ResilientMultiProviderLLM(providers)

# Scrape multiple pages
for i in range(100):
    html = fetch_page(f"https://example.com/page{i}")
    result = scraper.extract_data(html, "Extract product data")

    if result:
        save_result(result)

    # Check health status periodically
    if i % 10 == 0:
        print("Health status:", scraper.get_health_status())

Best Practices for Multi-Provider Scraping

1. Standardize Output Format

Ensure all providers return data in the same format:

def normalize_llm_response(response: str, provider: str) -> Dict:
    """Normalize responses from different providers"""
    try:
        # Try to parse as JSON
        return json.loads(response)
    except json.JSONDecodeError:
        # Extract JSON from markdown code blocks
        import re
        json_match = re.search(r'```language-json\n(.*?)\n```', response, re.DOTALL)
        if json_match:
            return json.loads(json_match.group(1))

        # Provider-specific normalization
        if provider == 'claude':
            # Claude might wrap in XML tags
            return parse_claude_response(response)

        # Fallback: return as plain text
        return {'text': response}

2. Implement Caching

Cache responses to avoid redundant API calls across providers:

import hashlib
import json

class CachedMultiProviderLLM:
    def __init__(self, providers: Dict, cache_dir: str = './cache'):
        self.providers = providers
        self.cache_dir = cache_dir
        os.makedirs(cache_dir, exist_ok=True)

    def extract_data(self, html_content: str, prompt: str) -> str:
        # Generate cache key
        cache_key = hashlib.md5(f"{html_content}{prompt}".encode()).hexdigest()
        cache_file = f"{self.cache_dir}/{cache_key}.json"

        # Check cache
        if os.path.exists(cache_file):
            with open(cache_file, 'r') as f:
                cached = json.load(f)
                print(f"Cache hit (from {cached['provider']})")
                return cached['result']

        # Try providers
        for provider_name, provider_func in self.providers.items():
            try:
                result = provider_func(html_content, prompt)

                # Cache the result
                with open(cache_file, 'w') as f:
                    json.dump({
                        'provider': provider_name,
                        'result': result,
                        'timestamp': time.time()
                    }, f)

                return result
            except Exception as e:
                continue

        return None

3. Monitor Costs Across Providers

Track spending to optimize your multi-provider strategy:

class CostTrackingLLM:
    def __init__(self, providers: Dict, pricing: Dict):
        """
        pricing: Dict of provider -> {'input': cost_per_1k, 'output': cost_per_1k}
        """
        self.providers = providers
        self.pricing = pricing
        self.usage_stats = {name: {'requests': 0, 'tokens': 0, 'cost': 0}
                           for name in providers}

    def extract_data(self, html_content: str, prompt: str) -> str:
        for provider_name, provider_func in self.providers.items():
            try:
                result = provider_func(html_content, prompt)

                # Estimate tokens (rough approximation)
                input_tokens = len(html_content + prompt) / 4
                output_tokens = len(result) / 4

                # Calculate cost
                cost = (
                    (input_tokens / 1000) * self.pricing[provider_name]['input'] +
                    (output_tokens / 1000) * self.pricing[provider_name]['output']
                )

                # Update stats
                self.usage_stats[provider_name]['requests'] += 1
                self.usage_stats[provider_name]['tokens'] += input_tokens + output_tokens
                self.usage_stats[provider_name]['cost'] += cost

                return result
            except Exception:
                continue

        return None

    def get_cost_report(self) -> Dict:
        """Generate cost report"""
        return self.usage_stats

4. Handle Rate Limiting Across Providers

Implement proper rate limiting strategies for each provider:

import asyncio
from asyncio import Semaphore

class RateLimitedMultiProvider:
    def __init__(self, providers: Dict, rate_limits: Dict):
        """
        rate_limits: Dict of provider -> requests_per_minute
        """
        self.providers = providers
        self.limiters = {
            name: Semaphore(rate_limits[name])
            for name in providers
        }

    async def extract_data_async(self, html_content: str, prompt: str) -> str:
        """Try providers with rate limiting"""
        for provider_name, provider_func in self.providers.items():
            async with self.limiters[provider_name]:
                try:
                    result = await provider_func(html_content, prompt)
                    return result
                except Exception as e:
                    print(f"{provider_name} failed: {e}")
                    continue

        return None

Integration with Web Scraping Workflows

When combining multiple LLM providers with browser automation, implement proper error handling and timeout management:

from playwright.sync_api import sync_playwright

def scrape_with_multi_llm(url: str, scraper: MultiProviderLLM) -> Dict:
    """Scrape page and extract data using multi-provider LLM"""
    try:
        with sync_playwright() as p:
            browser = p.chromium.launch()
            page = browser.new_page()

            # Navigate with timeout
            page.goto(url, timeout=30000)

            # Get content
            html = page.content()
            browser.close()

            # Extract data with LLM fallback
            result = scraper.extract_data(
                html,
                "Extract product name, price, and availability as JSON"
            )

            return json.loads(result) if result else None

    except Exception as e:
        print(f"Scraping failed for {url}: {e}")
        return None

# Usage
scraper = MultiProviderLLM(
    openai_key="sk-...",
    anthropic_key="sk-ant-..."
)

products = []
for url in product_urls:
    data = scrape_with_multi_llm(url, scraper)
    if data:
        products.append(data)

Conclusion

Using multiple LLM providers for web scraping significantly improves reliability, reduces costs, and optimizes performance. By implementing fallback strategies, smart routing, health monitoring, and proper rate limiting, you can build robust scraping systems that handle failures gracefully and maintain consistent operation.

Start with a simple fallback pattern and gradually add sophistication as your needs grow. Monitor performance and costs across providers to continuously optimize your multi-provider strategy. The key is balancing reliability with complexity—use as many providers as needed to meet your uptime requirements, but avoid over-engineering for simple use cases.

With the right multi-provider architecture, you can scrape at scale with confidence, knowing that no single provider failure will bring your entire operation to a halt.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon