Table of contents

How Do I Scrape Multilingual Websites Using LLMs?

Scraping multilingual websites presents unique challenges that traditional web scraping methods struggle to address—different character encodings, varied HTML structures across language versions, and the complexity of extracting and translating content simultaneously. Large Language Models (LLMs) revolutionize this process by understanding content semantically across languages, enabling intelligent extraction without language-specific parsing rules.

LLMs can process websites in any language, extract structured data, translate content on-the-fly, and even understand context-dependent information that varies by locale. This makes them particularly powerful for international e-commerce monitoring, global news aggregation, and multi-regional competitive analysis.

Understanding Multilingual Scraping Challenges

Traditional Scraping Limitations

Traditional web scraping relies on selectors that often break across language versions of websites. Even when selectors remain consistent, handling different languages requires extensive preprocessing, translation APIs, and language-specific parsing logic.

from bs4 import BeautifulSoup
import requests

# Traditional approach - needs separate logic for each language
def scrape_traditional(url, language):
    response = requests.get(url)
    response.encoding = 'utf-8'  # Must handle encoding manually
    soup = BeautifulSoup(response.content, 'html.parser')

    # Different selectors for different language versions
    if language == 'en':
        title = soup.select_one('.product-title-en').text
    elif language == 'ja':
        title = soup.select_one('.product-title-ja').text
    elif language == 'zh':
        title = soup.select_one('.product-title-zh').text

    # Needs external translation API
    return title  # Still in original language

LLM-Based Solution

LLMs handle multilingual content natively, understanding context across languages without language-specific rules.

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

# Works for any language - extracts and understands contextually
result = client.get_fields(
    url='https://example.jp/product/12345',
    fields={
        'product_name': 'The product name',
        'price': 'Current price with currency',
        'specifications': 'Technical specifications list',
        'availability': 'Stock availability status'
    }
)

# Data extracted accurately regardless of source language
print(result)

Extracting Data from Multilingual Websites

Basic Multilingual Data Extraction

LLMs can extract structured data from pages in any language without requiring language detection or translation preprocessing.

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def scrape_multilingual_product(url):
    """Extract product data regardless of page language"""

    data = client.get_fields(
        url=url,
        fields={
            'product_name': 'Full product name',
            'brand': 'Brand or manufacturer name',
            'price': 'Current selling price with currency symbol',
            'original_price': 'Original price before discount if available',
            'description': 'Product description',
            'features': 'List of key product features',
            'specifications': 'Technical specifications as key-value pairs',
            'availability': 'In stock status',
            'rating': 'Average customer rating',
            'review_count': 'Number of customer reviews',
            'shipping_info': 'Shipping time and cost details'
        },
        js=True  # Enable JavaScript rendering for dynamic content
    )

    return data

# Works on Japanese site
jp_data = scrape_multilingual_product('https://example.jp/製品/12345')

# Works on German site with same code
de_data = scrape_multilingual_product('https://example.de/produkt/12345')

# Works on Arabic site (right-to-left) with same code
ar_data = scrape_multilingual_product('https://example.ae/منتج/12345')

print(f"Japanese product: {jp_data['product_name']}")
print(f"German product: {de_data['product_name']}")
print(f"Arabic product: {ar_data['product_name']}")

Using Natural Language Questions Across Languages

The question-based extraction approach is particularly powerful for multilingual sites because you can ask questions in your language about content in any language.

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

# Ask questions in English about pages in different languages
def extract_with_questions(url):
    questions = {
        'What is the product warranty period?',
        'What payment methods are accepted?',
        'What is the return policy?',
        'Is international shipping available?',
        'What are the delivery timeframes?'
    }

    results = {}
    for question in questions:
        answer = client.get_question(
            url=url,
            question=question
        )
        results[question] = answer

    return results

# Query Chinese website in English
chinese_site_info = extract_with_questions('https://example.cn/产品')

# Query French website in English
french_site_info = extract_with_questions('https://example.fr/produit')

# Query Russian website in English
russian_site_info = extract_with_questions('https://example.ru/товар')

for question, answer in chinese_site_info.items():
    print(f"Q: {question}")
    print(f"A: {answer}\n")

JavaScript Implementation for Multilingual Scraping

const WebScrapingAI = require('webscraping.ai');

const client = new WebScrapingAI('YOUR_API_KEY');

async function scrapeMultilingualNews(urls) {
    const articles = [];

    for (const url of urls) {
        try {
            const data = await client.getFields(url, {
                'headline': 'Article headline or title',
                'author': 'Article author name',
                'publish_date': 'Publication date',
                'category': 'Article category or section',
                'summary': 'Brief article summary (2-3 sentences)',
                'main_content': 'Full article text content',
                'tags': 'Article tags or keywords',
                'source_language': 'What language is this article written in?'
            }, {
                js: true,
                device: 'desktop'
            });

            articles.push({
                url: url,
                ...data,
                scraped_at: new Date().toISOString()
            });

        } catch (error) {
            console.error(`Error scraping ${url}:`, error.message);
        }
    }

    return articles;
}

// Scrape news from multiple countries and languages
const newsUrls = [
    'https://example.jp/ニュース/article1',      // Japanese
    'https://example.kr/뉴스/article2',          // Korean
    'https://example.es/noticias/article3',     // Spanish
    'https://example.de/nachrichten/article4',  // German
    'https://example.in/समाचार/article5'        // Hindi
];

scrapeMultilingualNews(newsUrls)
    .then(articles => {
        articles.forEach(article => {
            console.log(`Title: ${article.headline}`);
            console.log(`Language: ${article.source_language}`);
            console.log(`Summary: ${article.summary}\n`);
        });
    });

Handling Region-Specific Website Versions

Many websites maintain separate versions for different regions, each with its own domain or subdirectory. LLMs excel at extracting comparable data across these variations.

Scraping Regional E-commerce Sites

from webscraping_ai import WebScrapingAI
import json

client = WebScrapingAI(api_key='YOUR_API_KEY')

def scrape_regional_pricing(product_id, regions):
    """
    Compare product information across regional websites
    """
    regional_data = {}

    # Regional domain mappings
    domains = {
        'us': 'example.com',
        'uk': 'example.co.uk',
        'de': 'example.de',
        'jp': 'example.jp',
        'fr': 'example.fr',
        'es': 'example.es',
        'cn': 'example.cn',
        'br': 'example.com.br'
    }

    fields_template = {
        'product_name': 'Product name in local language',
        'price': 'Current price with local currency',
        'price_numeric': 'Numeric price value only',
        'currency': 'Currency code (USD, EUR, GBP, etc.)',
        'availability': 'Stock status',
        'shipping_cost': 'Shipping cost to local addresses',
        'shipping_time': 'Estimated delivery time',
        'local_warranty': 'Warranty period and terms',
        'special_offers': 'Any active promotions or discounts'
    }

    for region in regions:
        if region not in domains:
            continue

        url = f"https://{domains[region]}/product/{product_id}"

        try:
            # Set country for proper proxy routing
            data = client.get_fields(
                url=url,
                fields=fields_template,
                country=region,
                js=True
            )

            data['region'] = region
            data['url'] = url
            regional_data[region] = data

        except Exception as e:
            print(f"Error scraping {region}: {e}")
            regional_data[region] = {'error': str(e)}

    return regional_data

# Compare product across regions
regions = ['us', 'uk', 'de', 'jp', 'fr']
pricing_data = scrape_regional_pricing('ABC123', regions)

# Analyze regional differences
for region, data in pricing_data.items():
    if 'error' not in data:
        print(f"\n{region.upper()}:")
        print(f"  Name: {data['product_name']}")
        print(f"  Price: {data['price']}")
        print(f"  Availability: {data['availability']}")
        print(f"  Shipping: {data['shipping_time']}")

Handling Multiple Language Versions with Navigation

When scraping sites with language selectors, you can combine browser automation for navigation with LLM-based extraction.

const puppeteer = require('puppeteer');
const WebScrapingAI = require('webscraping.ai');

const aiClient = new WebScrapingAI('YOUR_API_KEY');

async function scrapeAllLanguageVersions(baseUrl, languageSelectors) {
    const browser = await puppeteer.launch({ headless: true });
    const page = await browser.newPage();

    const allVersions = [];

    for (const [langCode, selector] of Object.entries(languageSelectors)) {
        try {
            // Navigate to base page
            await page.goto(baseUrl, { waitUntil: 'networkidle2' });

            // Click language selector
            await page.click(selector);
            await page.waitForTimeout(2000); // Wait for language switch

            const currentUrl = page.url();

            // Use AI to extract data in current language
            const data = await aiClient.getFields(currentUrl, {
                'page_title': 'Main page title',
                'main_content': 'Primary content text',
                'menu_items': 'List of navigation menu items',
                'contact_info': 'Contact information including email and phone',
                'language_code': 'What language is this page in?'
            });

            allVersions.push({
                language: langCode,
                url: currentUrl,
                ...data
            });

        } catch (error) {
            console.error(`Error with language ${langCode}:`, error.message);
        }
    }

    await browser.close();
    return allVersions;
}

// Language selector mappings
const languageSelectors = {
    'en': '#lang-selector-en',
    'es': '#lang-selector-es',
    'fr': '#lang-selector-fr',
    'de': '#lang-selector-de',
    'zh': '#lang-selector-zh'
};

scrapeAllLanguageVersions('https://example.com', languageSelectors)
    .then(versions => {
        console.log(JSON.stringify(versions, null, 2));
    });

Extracting and Translating Content Simultaneously

One of the most powerful features of LLM-based scraping is the ability to extract and translate content in a single operation.

Direct Translation During Extraction

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def extract_and_translate(url, target_language='English'):
    """
    Extract content and request it in a specific language
    """

    # Add language instruction to field descriptions
    fields = {
        'product_name': f'Product name translated to {target_language}',
        'description': f'Product description translated to {target_language}',
        'features': f'List of product features translated to {target_language}',
        'specifications': 'Technical specifications with labels translated to {target_language}',
        'original_language': 'What language was the original page in?'
    }

    result = client.get_fields(url=url, fields=fields, js=True)
    return result

# Scrape Japanese site, get results in English
jp_product_en = extract_and_translate(
    'https://example.jp/製品/laptop-xyz',
    target_language='English'
)

print(f"Original language: {jp_product_en['original_language']}")
print(f"Product name (EN): {jp_product_en['product_name']}")
print(f"Description (EN): {jp_product_en['description']}")

# Scrape same Japanese site, get results in Spanish
jp_product_es = extract_and_translate(
    'https://example.jp/製品/laptop-xyz',
    target_language='Spanish'
)

print(f"\nProduct name (ES): {jp_product_es['product_name']}")
print(f"Description (ES): {jp_product_es['description']}")

Question-Based Translation

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def get_translated_answers(url, questions, output_language='English'):
    """
    Ask questions and get answers in specified language
    """

    answers = {}

    for question in questions:
        # Add language instruction to question
        localized_question = f"{question} (Answer in {output_language})"

        answer = client.get_question(
            url=url,
            question=localized_question
        )

        answers[question] = answer

    return answers

# Query German website, get English answers
questions = [
    'What are the main product features?',
    'What is the price and what does it include?',
    'What are the shipping options?',
    'What is the warranty coverage?'
]

german_site_answers = get_translated_answers(
    'https://example.de/produkt/smartphone',
    questions,
    output_language='English'
)

for q, a in german_site_answers.items():
    print(f"Q: {q}")
    print(f"A: {a}\n")

# Same questions, Spanish answers from Chinese website
chinese_site_answers = get_translated_answers(
    'https://example.cn/产品/智能手机',
    questions,
    output_language='Spanish'
)

Handling Character Encodings and Special Characters

LLMs naturally handle various character encodings, including complex scripts like Chinese, Japanese, Korean, Arabic, Hebrew, and Cyrillic.

Working with Non-Latin Scripts

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def scrape_complex_scripts(urls):
    """
    Handle websites with various character systems
    """

    results = []

    for url in urls:
        data = client.get_fields(
            url=url,
            fields={
                'title': 'Page title in original script',
                'title_romanized': 'Page title romanized/transliterated to Latin alphabet',
                'content': 'Main content in original script',
                'language': 'Language name in English',
                'script': 'Writing system (Latin, Cyrillic, Arabic, Chinese, etc.)',
                'reading_direction': 'Is text left-to-right or right-to-left?'
            }
        )

        data['url'] = url
        results.append(data)

    return results

# Test with various scripts
test_urls = [
    'https://example.jp/記事',        # Japanese (Hiragana, Katakana, Kanji)
    'https://example.kr/기사',        # Korean (Hangul)
    'https://example.cn/文章',        # Chinese (Simplified)
    'https://example.tw/文章',        # Chinese (Traditional)
    'https://example.ae/مقالة',      # Arabic
    'https://example.il/מאמר',      # Hebrew
    'https://example.ru/статья',     # Russian (Cyrillic)
    'https://example.gr/άρθρο',     # Greek
    'https://example.th/บทความ'      # Thai
]

script_results = scrape_complex_scripts(test_urls)

for result in script_results:
    print(f"\nLanguage: {result['language']}")
    print(f"Script: {result['script']}")
    print(f"Direction: {result['reading_direction']}")
    print(f"Original: {result['title']}")
    print(f"Romanized: {result['title_romanized']}")

Best Practices for Multilingual Scraping with LLMs

1. Be Explicit About Language Requirements

When extracting data, clearly specify whether you want content in the original language or translated.

# Unclear - may return mixed languages
fields = {'description': 'Product description'}

# Clear - specifies desired language
fields = {
    'description_original': 'Product description in original language',
    'description_english': 'Product description translated to English',
    'source_language': 'What language is the original description in?'
}

2. Handle Regional Number and Date Formats

Different regions use different formats for numbers, currencies, and dates. LLMs can normalize these.

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def extract_normalized_data(url):
    """
    Extract data with normalized formats
    """

    return client.get_fields(
        url=url,
        fields={
            'price_local': 'Price as displayed on page',
            'price_usd': 'Price converted to USD (provide conversion if needed)',
            'date_local': 'Date as shown on page',
            'date_iso': 'Date in ISO 8601 format (YYYY-MM-DD)',
            'number_format': 'Does this region use period or comma for decimals?',
            'currency_code': 'Three-letter currency code (USD, EUR, JPY, etc.)'
        }
    )

# European site (comma for decimal)
eu_data = extract_normalized_data('https://example.de/produkt')
print(f"Local price: {eu_data['price_local']}")      # "1.299,99 €"
print(f"USD price: {eu_data['price_usd']}")          # "$1,450.00"
print(f"Local date: {eu_data['date_local']}")        # "15.03.2024"
print(f"ISO date: {eu_data['date_iso']}")            # "2024-03-15"

3. Implement Error Handling for Language Detection

from webscraping_ai import WebScrapingAI, WebScrapingAIError
import logging

client = WebScrapingAI(api_key='YOUR_API_KEY')
logging.basicConfig(level=logging.INFO)

def safe_multilingual_scrape(url, fields, retry_count=3):
    """
    Robust scraping with error handling for multilingual sites
    """

    # Add language detection field
    enhanced_fields = {
        **fields,
        '_detected_language': 'What language is this page primarily in?',
        '_has_mixed_languages': 'Does this page contain multiple languages?'
    }

    for attempt in range(retry_count):
        try:
            result = client.get_fields(
                url=url,
                fields=enhanced_fields,
                js=True
            )

            logging.info(f"Successfully scraped {url}")
            logging.info(f"Detected language: {result.get('_detected_language')}")

            return result

        except WebScrapingAIError as e:
            logging.error(f"Attempt {attempt + 1} failed for {url}: {e}")

            if attempt == retry_count - 1:
                raise

            # Wait before retry
            import time
            time.sleep(2 ** attempt)

    return None

# Use with error handling
try:
    data = safe_multilingual_scrape(
        'https://example.cn/产品/123',
        {
            'product_name': 'Product name',
            'price': 'Price with currency',
            'description': 'Product description'
        }
    )
    print(f"Extracted data: {data}")
except Exception as e:
    print(f"Failed to scrape: {e}")

4. Batch Process Multiple Languages Efficiently

const WebScrapingAI = require('webscraping.ai');

const client = new WebScrapingAI('YOUR_API_KEY');

async function batchMultilingualScrape(urlsByLanguage) {
    const promises = [];

    for (const [language, urls] of Object.entries(urlsByLanguage)) {
        for (const url of urls) {
            // Create promise for each scraping task
            const promise = client.getFields(url, {
                'title': 'Page title',
                'content': 'Main content',
                'metadata': 'Meta description',
                'language_detected': 'Detected page language'
            }, {
                js: true
            }).then(data => ({
                language: language,
                url: url,
                ...data,
                scraped_at: new Date().toISOString()
            })).catch(error => ({
                language: language,
                url: url,
                error: error.message
            }));

            promises.push(promise);
        }
    }

    // Execute all requests concurrently
    const results = await Promise.all(promises);

    // Group results by language
    const grouped = {};
    for (const result of results) {
        if (!grouped[result.language]) {
            grouped[result.language] = [];
        }
        grouped[result.language].push(result);
    }

    return grouped;
}

// Batch scrape URLs from different languages
const urlsByLanguage = {
    'japanese': [
        'https://example.jp/page1',
        'https://example.jp/page2'
    ],
    'german': [
        'https://example.de/seite1',
        'https://example.de/seite2'
    ],
    'spanish': [
        'https://example.es/pagina1',
        'https://example.es/pagina2'
    ]
};

batchMultilingualScrape(urlsByLanguage)
    .then(results => {
        for (const [lang, data] of Object.entries(results)) {
            console.log(`\n${lang.toUpperCase()} Results:`);
            data.forEach(item => {
                if (item.error) {
                    console.log(`  ❌ ${item.url}: ${item.error}`);
                } else {
                    console.log(`  ✅ ${item.url}: ${item.title}`);
                }
            });
        }
    });

Real-World Use Cases

International Price Comparison

from webscraping_ai import WebScrapingAI
from datetime import datetime
import json

client = WebScrapingAI(api_key='YOUR_API_KEY')

def compare_international_prices(product_urls):
    """
    Compare product prices across different countries
    """

    comparison = []

    for url in product_urls:
        data = client.get_fields(
            url=url,
            fields={
                'product_name': 'Product name in English',
                'local_price': 'Price as displayed (with currency symbol)',
                'numeric_price': 'Numeric price value only',
                'currency': 'Currency code',
                'country': 'What country is this website for?',
                'in_stock': 'Is the product in stock?',
                'shipping_to_us': 'Can this ship to United States? If yes, what is the cost?',
                'total_cost_usd': 'Estimated total cost in USD including shipping (provide estimation)',
                'taxes_included': 'Are taxes included in the displayed price?'
            }
        )

        data['url'] = url
        data['checked_at'] = datetime.now().isoformat()
        comparison.append(data)

    # Sort by total USD cost
    comparison.sort(key=lambda x: float(x.get('numeric_price', float('inf'))))

    return comparison

# Compare prices across regions
urls = [
    'https://example.com/product/camera',      # USA
    'https://example.co.uk/product/camera',    # UK
    'https://example.de/produkt/kamera',       # Germany
    'https://example.jp/製品/カメラ',             # Japan
    'https://example.com.au/product/camera'    # Australia
]

price_comparison = compare_international_prices(urls)

print("Price Comparison Results:\n")
for item in price_comparison:
    print(f"{item['country']}:")
    print(f"  Price: {item['local_price']} ({item['currency']})")
    print(f"  Est. USD: ${item['total_cost_usd']}")
    print(f"  Stock: {item['in_stock']}")
    print(f"  URL: {item['url']}\n")

Multilingual Content Aggregation

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def aggregate_global_news(news_sources):
    """
    Aggregate news from international sources in multiple languages
    """

    articles = []

    for source in news_sources:
        try:
            data = client.get_fields(
                url=source['url'],
                fields={
                    'headline_original': 'Article headline in original language',
                    'headline_english': 'Article headline translated to English',
                    'summary_english': 'Brief article summary in English (2-3 sentences)',
                    'author': 'Article author',
                    'publish_date': 'Publication date in YYYY-MM-DD format',
                    'category': 'Article category or topic',
                    'sentiment': 'Is the article tone positive, negative, or neutral?',
                    'key_entities': 'Main people, organizations, or locations mentioned',
                    'source_language': 'Source language of the article'
                }
            )

            articles.append({
                'source': source['name'],
                'country': source['country'],
                **data
            })

        except Exception as e:
            print(f"Error scraping {source['name']}: {e}")

    return articles

# International news sources
sources = [
    {'name': 'Le Monde', 'url': 'https://lemonde.fr/article/xyz', 'country': 'France'},
    {'name': 'Der Spiegel', 'url': 'https://spiegel.de/artikel/xyz', 'country': 'Germany'},
    {'name': 'Asahi Shimbun', 'url': 'https://asahi.com/記事/xyz', 'country': 'Japan'},
    {'name': 'El País', 'url': 'https://elpais.com/articulo/xyz', 'country': 'Spain'}
]

global_news = aggregate_global_news(sources)

# Display aggregated news
for article in global_news:
    print(f"\n{'='*60}")
    print(f"Source: {article['source']} ({article['country']})")
    print(f"Language: {article['source_language']}")
    print(f"Original: {article['headline_original']}")
    print(f"English: {article['headline_english']}")
    print(f"Summary: {article['summary_english']}")
    print(f"Sentiment: {article['sentiment']}")

Monitoring International Competitor Websites

When monitoring network requests from competitor sites, LLMs can help extract and compare features across language versions.

from webscraping_ai import WebScrapingAI

client = WebScrapingAI(api_key='YOUR_API_KEY')

def monitor_competitor_features(competitor_sites):
    """
    Track competitor features across different regional markets
    """

    all_features = {}

    for site in competitor_sites:
        features = client.get_fields(
            url=site['url'],
            fields={
                'product_features': 'List of all product features and capabilities',
                'pricing_tiers': 'Available pricing plans with features for each tier',
                'unique_selling_points': 'Main competitive advantages highlighted',
                'target_audience': 'Who is this product targeted at?',
                'new_announcements': 'Any recent product updates or announcements',
                'region_specific_features': 'Features that seem specific to this region',
                'page_language': 'Page language'
            }
        )

        all_features[site['region']] = {
            'competitor': site['competitor'],
            'url': site['url'],
            **features
        }

    return all_features

# Monitor competitors across regions
competitors = [
    {
        'competitor': 'Competitor A',
        'region': 'USA',
        'url': 'https://competitora.com/product'
    },
    {
        'competitor': 'Competitor A',
        'region': 'Germany',
        'url': 'https://competitora.de/produkt'
    },
    {
        'competitor': 'Competitor A',
        'region': 'Japan',
        'url': 'https://competitora.jp/製品'
    }
]

feature_comparison = monitor_competitor_features(competitors)

# Analyze regional differences
for region, data in feature_comparison.items():
    print(f"\n{region}:")
    print(f"  Language: {data['page_language']}")
    print(f"  Features: {data['product_features']}")
    print(f"  Region-specific: {data['region_specific_features']}")

Conclusion

LLMs transform multilingual web scraping from a complex, maintenance-intensive challenge into a straightforward, scalable process. By understanding content semantically rather than relying on brittle selectors and language-specific rules, LLM-based scraping enables developers to extract, translate, and structure data from websites in any language using a single, unified approach.

The ability to ask questions in one language about content in another, automatically normalize regional formats, and handle complex character encodings makes LLMs particularly valuable for international business intelligence, global e-commerce monitoring, and multilingual content aggregation. As businesses expand globally, LLM-powered scraping tools provide the flexibility and intelligence needed to gather insights from the entire international web, not just English-language sources.

Whether you're monitoring competitor prices across regions, aggregating news from international sources, or building a global product catalog, LLMs provide a powerful, maintainable solution for multilingual web scraping that adapts to change and scales across languages effortlessly.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon