How do I Optimize MCP Server Performance for Large-Scale Scraping?
When working with Model Context Protocol (MCP) servers for large-scale web scraping operations, performance optimization becomes critical. Whether you're scraping thousands of pages daily or running concurrent scraping jobs, proper optimization can mean the difference between a successful operation and a bottlenecked system. This guide covers essential techniques and best practices for maximizing MCP server performance.
Understanding MCP Server Performance Bottlenecks
Before diving into optimization techniques, it's important to identify common performance bottlenecks in MCP-based scraping systems:
- Connection overhead: Establishing new connections for each request
- Memory consumption: Accumulating data without proper cleanup
- CPU utilization: Inefficient processing of scraped data
- Network latency: Sequential requests instead of parallel processing
- Resource leaks: Not properly closing browser instances or connections
1. Implement Connection Pooling
Connection pooling is one of the most effective ways to improve MCP server performance. Instead of creating new connections for each request, maintain a pool of reusable connections.
Python Implementation
import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from contextlib import AsyncExitStack
class MCPConnectionPool:
def __init__(self, server_params, pool_size=5):
self.server_params = server_params
self.pool_size = pool_size
self.connections = asyncio.Queue(maxsize=pool_size)
self.exit_stack = AsyncExitStack()
async def initialize(self):
"""Create initial pool of connections"""
for _ in range(self.pool_size):
session = await self._create_connection()
await self.connections.put(session)
async def _create_connection(self):
"""Create a new MCP connection"""
stdio_transport = await self.exit_stack.enter_async_context(
stdio_client(self.server_params)
)
stdio, write = stdio_transport
session = await self.exit_stack.enter_async_context(
ClientSession(stdio, write)
)
await session.initialize()
return session
async def acquire(self):
"""Get a connection from the pool"""
return await self.connections.get()
async def release(self, session):
"""Return a connection to the pool"""
await self.connections.put(session)
async def close(self):
"""Close all connections"""
await self.exit_stack.aclose()
# Usage
async def scrape_with_pool():
server_params = StdioServerParameters(
command="node",
args=["path/to/mcp-server.js"]
)
pool = MCPConnectionPool(server_params, pool_size=10)
await pool.initialize()
urls = ["https://example.com/page" + str(i) for i in range(100)]
async def scrape_url(url):
session = await pool.acquire()
try:
result = await session.call_tool(
"webscraping_ai_text",
{"url": url}
)
return result
finally:
await pool.release(session)
# Process URLs concurrently
tasks = [scrape_url(url) for url in urls]
results = await asyncio.gather(*tasks)
await pool.close()
return results
JavaScript Implementation
class MCPConnectionPool {
constructor(serverConfig, poolSize = 5) {
this.serverConfig = serverConfig;
this.poolSize = poolSize;
this.available = [];
this.inUse = new Set();
}
async initialize() {
const promises = [];
for (let i = 0; i < this.poolSize; i++) {
promises.push(this.createConnection());
}
this.available = await Promise.all(promises);
}
async createConnection() {
const { Client } = await import('@modelcontextprotocol/sdk/client/index.js');
const { StdioClientTransport } = await import('@modelcontextprotocol/sdk/client/stdio.js');
const transport = new StdioClientTransport({
command: this.serverConfig.command,
args: this.serverConfig.args
});
const client = new Client({
name: "scraper-client",
version: "1.0.0"
}, {
capabilities: {}
});
await client.connect(transport);
return client;
}
async acquire() {
while (this.available.length === 0) {
await new Promise(resolve => setTimeout(resolve, 100));
}
const connection = this.available.pop();
this.inUse.add(connection);
return connection;
}
release(connection) {
this.inUse.delete(connection);
this.available.push(connection);
}
async close() {
const allConnections = [...this.available, ...this.inUse];
await Promise.all(allConnections.map(conn => conn.close()));
}
}
// Usage
async function scrapeWithPool() {
const pool = new MCPConnectionPool({
command: 'node',
args: ['path/to/mcp-server.js']
}, 10);
await pool.initialize();
const urls = Array.from({length: 100}, (_, i) =>
`https://example.com/page${i}`
);
const scrapeUrl = async (url) => {
const client = await pool.acquire();
try {
const result = await client.callTool({
name: 'webscraping_ai_text',
arguments: { url }
});
return result;
} finally {
pool.release(client);
}
};
const results = await Promise.all(urls.map(scrapeUrl));
await pool.close();
return results;
}
2. Implement Intelligent Caching
Caching reduces redundant requests and significantly improves performance. Implement multi-layer caching for different data types.
import hashlib
import json
from datetime import datetime, timedelta
from typing import Optional
class MCPCache:
def __init__(self, ttl_seconds=3600):
self.cache = {}
self.ttl = timedelta(seconds=ttl_seconds)
def _generate_key(self, tool_name: str, arguments: dict) -> str:
"""Generate cache key from tool name and arguments"""
data = json.dumps({"tool": tool_name, "args": arguments}, sort_keys=True)
return hashlib.sha256(data.encode()).hexdigest()
def get(self, tool_name: str, arguments: dict) -> Optional[dict]:
"""Retrieve cached result if available and not expired"""
key = self._generate_key(tool_name, arguments)
if key in self.cache:
entry = self.cache[key]
if datetime.now() - entry['timestamp'] < self.ttl:
return entry['result']
else:
del self.cache[key]
return None
def set(self, tool_name: str, arguments: dict, result: dict):
"""Store result in cache"""
key = self._generate_key(tool_name, arguments)
self.cache[key] = {
'result': result,
'timestamp': datetime.now()
}
def clear_expired(self):
"""Remove expired entries"""
now = datetime.now()
expired_keys = [
k for k, v in self.cache.items()
if now - v['timestamp'] >= self.ttl
]
for key in expired_keys:
del self.cache[key]
# Usage with MCP
cache = MCPCache(ttl_seconds=1800) # 30 minutes
async def cached_scrape(session, tool_name, arguments):
# Check cache first
cached_result = cache.get(tool_name, arguments)
if cached_result:
return cached_result
# Call MCP tool if not cached
result = await session.call_tool(tool_name, arguments)
# Store in cache
cache.set(tool_name, arguments, result)
return result
3. Optimize Browser Automation Settings
When using MCP servers with browser automation tools like Puppeteer or Playwright, optimize browser settings for better performance.
// Optimized Puppeteer MCP configuration
const optimizedBrowserConfig = {
headless: true,
args: [
'--no-sandbox',
'--disable-setuid-sandbox',
'--disable-dev-shm-usage',
'--disable-accelerated-2d-canvas',
'--no-first-run',
'--no-zygote',
'--disable-gpu',
'--disable-web-security',
'--disable-features=IsolateOrigins,site-per-process',
'--disable-blink-features=AutomationControlled'
]
};
// Disable unnecessary features for faster page loads
async function optimizedPageSetup(page) {
// Block unnecessary resources
await page.setRequestInterception(true);
page.on('request', (request) => {
const resourceType = request.resourceType();
if (['image', 'stylesheet', 'font', 'media'].includes(resourceType)) {
request.abort();
} else {
request.continue();
}
});
// Set shorter timeout
page.setDefaultTimeout(15000);
page.setDefaultNavigationTimeout(30000);
}
Similar optimizations apply when handling browser sessions in Puppeteer for large-scale operations.
4. Implement Rate Limiting and Backoff Strategies
Protect your MCP server from overload while maximizing throughput with intelligent rate limiting.
import asyncio
from datetime import datetime
import time
class AdaptiveRateLimiter:
def __init__(self, initial_rate=10, max_rate=100, min_rate=1):
self.rate = initial_rate # requests per second
self.max_rate = max_rate
self.min_rate = min_rate
self.last_request_time = 0
self.error_count = 0
self.success_count = 0
self.lock = asyncio.Lock()
async def acquire(self):
"""Wait if necessary to maintain rate limit"""
async with self.lock:
now = time.time()
time_since_last = now - self.last_request_time
required_interval = 1.0 / self.rate
if time_since_last < required_interval:
await asyncio.sleep(required_interval - time_since_last)
self.last_request_time = time.time()
def record_success(self):
"""Increase rate on success"""
self.success_count += 1
self.error_count = 0
if self.success_count >= 10:
self.rate = min(self.rate * 1.1, self.max_rate)
self.success_count = 0
def record_error(self):
"""Decrease rate on error"""
self.error_count += 1
self.success_count = 0
if self.error_count >= 3:
self.rate = max(self.rate * 0.5, self.min_rate)
self.error_count = 0
# Usage
rate_limiter = AdaptiveRateLimiter(initial_rate=20)
async def rate_limited_scrape(session, url):
await rate_limiter.acquire()
try:
result = await session.call_tool(
"webscraping_ai_text",
{"url": url}
)
rate_limiter.record_success()
return result
except Exception as e:
rate_limiter.record_error()
raise e
5. Batch Processing and Parallelization
Process multiple URLs in batches with controlled parallelism to maximize throughput without overwhelming the server.
async def batch_scrape(urls, batch_size=50, max_concurrent=10):
"""Process URLs in batches with controlled concurrency"""
results = []
# Split URLs into batches
for i in range(0, len(urls), batch_size):
batch = urls[i:i + batch_size]
# Create semaphore for concurrency control
semaphore = asyncio.Semaphore(max_concurrent)
async def scrape_with_semaphore(url):
async with semaphore:
session = await pool.acquire()
try:
return await rate_limited_scrape(session, url)
finally:
await pool.release(session)
# Process batch concurrently
batch_results = await asyncio.gather(
*[scrape_with_semaphore(url) for url in batch],
return_exceptions=True
)
results.extend(batch_results)
# Small delay between batches
await asyncio.sleep(1)
return results
When running multiple pages in parallel with Puppeteer, similar batching strategies help maintain optimal performance.
6. Memory Management and Resource Cleanup
Proper memory management prevents leaks and ensures stable long-running operations.
import gc
import psutil
import asyncio
class MemoryMonitor:
def __init__(self, threshold_percent=80):
self.threshold = threshold_percent
self.process = psutil.Process()
def check_memory(self):
"""Check if memory usage exceeds threshold"""
memory_percent = self.process.memory_percent()
return memory_percent > self.threshold
async def cleanup_if_needed(self, force=False):
"""Perform cleanup if memory threshold exceeded"""
if force or self.check_memory():
# Force garbage collection
gc.collect()
# Clear caches if available
if hasattr(cache, 'clear_expired'):
cache.clear_expired()
# Wait a moment for cleanup
await asyncio.sleep(0.1)
print(f"Memory cleanup: {self.process.memory_percent():.2f}%")
# Usage in scraping loop
memory_monitor = MemoryMonitor(threshold_percent=75)
async def scrape_with_memory_management(urls):
results = []
for i, url in enumerate(urls):
result = await scrape_url(url)
results.append(result)
# Check memory every 100 requests
if i % 100 == 0:
await memory_monitor.cleanup_if_needed()
return results
7. Monitoring and Performance Metrics
Track performance metrics to identify bottlenecks and optimize accordingly.
from dataclasses import dataclass
from typing import List
import statistics
@dataclass
class PerformanceMetrics:
total_requests: int = 0
successful_requests: int = 0
failed_requests: int = 0
total_time: float = 0.0
response_times: List[float] = None
def __post_init__(self):
if self.response_times is None:
self.response_times = []
def add_request(self, success: bool, response_time: float):
self.total_requests += 1
if success:
self.successful_requests += 1
else:
self.failed_requests += 1
self.response_times.append(response_time)
self.total_time += response_time
def get_stats(self):
if not self.response_times:
return {}
return {
'total_requests': self.total_requests,
'success_rate': self.successful_requests / self.total_requests * 100,
'average_response_time': statistics.mean(self.response_times),
'median_response_time': statistics.median(self.response_times),
'p95_response_time': statistics.quantiles(self.response_times, n=20)[18],
'requests_per_second': self.total_requests / self.total_time if self.total_time > 0 else 0
}
# Usage
metrics = PerformanceMetrics()
async def monitored_scrape(session, url):
start_time = time.time()
success = False
try:
result = await session.call_tool("webscraping_ai_text", {"url": url})
success = True
return result
except Exception as e:
raise e
finally:
response_time = time.time() - start_time
metrics.add_request(success, response_time)
# Print stats periodically
async def print_stats_periodically():
while True:
await asyncio.sleep(60) # Every minute
stats = metrics.get_stats()
print(f"Performance Stats: {stats}")
8. Error Handling and Retry Logic
Implement robust error handling with exponential backoff for failed requests.
async def scrape_with_retry(session, url, max_retries=3):
"""Scrape with exponential backoff retry"""
for attempt in range(max_retries):
try:
result = await session.call_tool(
"webscraping_ai_text",
{"url": url, "timeout": 15000}
)
return result
except Exception as e:
if attempt == max_retries - 1:
# Last attempt, raise the error
raise e
# Exponential backoff: 1s, 2s, 4s
wait_time = 2 ** attempt
await asyncio.sleep(wait_time)
Understanding how to handle errors in Puppeteer is also crucial when working with MCP servers that utilize browser automation.
Best Practices Summary
- Use connection pooling to minimize connection overhead
- Implement caching for frequently accessed data
- Optimize browser settings to reduce resource consumption
- Apply rate limiting to prevent server overload
- Process in batches with controlled parallelism
- Monitor memory usage and perform regular cleanup
- Track performance metrics to identify optimization opportunities
- Implement retry logic with exponential backoff
Conclusion
Optimizing MCP server performance for large-scale scraping requires a multi-faceted approach combining connection management, caching, parallelization, and proper resource handling. By implementing these techniques, you can significantly improve throughput, reduce resource consumption, and build more reliable scraping systems.
For production environments, consider using managed scraping solutions like WebScraping.AI that handle these optimizations automatically, allowing you to focus on extracting the data you need rather than managing infrastructure and performance tuning.