What is the Claude API and How Does It Work with MCP Servers?
The Claude API is Anthropic's powerful artificial intelligence interface that enables developers to integrate advanced language models into their applications. When combined with Model Context Protocol (MCP) servers, Claude becomes a sophisticated tool for web scraping, data extraction, and browser automation tasks.
Understanding the Claude API
The Claude API provides access to Anthropic's family of large language models through a RESTful HTTP interface. It supports various capabilities including:
- Text generation and analysis: Process and generate human-like text responses
- Code generation: Create, analyze, and debug code in multiple languages
- Data extraction: Extract structured data from unstructured text
- Tool use: Execute external tools and APIs through function calling
- Vision capabilities: Analyze images and screenshots (Claude 3 models)
Core API Features
The Claude API operates on a conversation-based model where you send messages and receive AI-generated responses. Each request includes:
- Model selection: Choose from different Claude versions (Opus, Sonnet, Haiku)
- System prompts: Define the AI's behavior and capabilities
- Messages: User and assistant conversation history
- Tool definitions: Declare external functions the model can call
- Parameters: Control temperature, max tokens, and other settings
Model Context Protocol (MCP) Explained
MCP is an open protocol that standardizes how AI applications communicate with external data sources and tools. Think of MCP servers as specialized microservices that provide:
- Resources: Access to external data (databases, APIs, files)
- Tools: Executable functions for performing actions
- Prompts: Pre-configured templates for common tasks
- Sampling: Request AI completions from the server side
How MCP Enhances Web Scraping
MCP servers transform Claude from a conversational AI into a powerful automation engine. For web scraping specifically, MCP provides:
- Browser automation tools: Direct integration with Puppeteer and Playwright
- HTTP client capabilities: Make authenticated requests to APIs
- Data persistence: Store scraped data to databases or files
- Workflow orchestration: Chain multiple scraping operations together
Integrating Claude API with MCP Servers
Setting Up the Environment
First, install the necessary dependencies:
Python:
pip install anthropic mcp-client
JavaScript/Node.js:
npm install @anthropic-ai/sdk @modelcontextprotocol/sdk
Configuring MCP Server Connection
Here's how to configure an MCP server for web scraping with Claude:
Python Example:
import anthropic
from mcp import Client as MCPClient
# Initialize Claude API client
claude_client = anthropic.Anthropic(
api_key="your-api-key"
)
# Connect to MCP server
mcp_client = MCPClient("http://localhost:3000")
# List available tools from MCP server
tools = mcp_client.list_tools()
print(f"Available tools: {tools}")
# Create a message with tool use
response = claude_client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1024,
tools=tools,
messages=[
{
"role": "user",
"content": "Scrape the product title and price from https://example.com/products"
}
]
)
# Handle tool calls
if response.stop_reason == "tool_use":
for content_block in response.content:
if content_block.type == "tool_use":
# Execute tool through MCP server
tool_result = mcp_client.call_tool(
content_block.name,
content_block.input
)
# Send result back to Claude
final_response = claude_client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1024,
messages=[
{"role": "user", "content": "Scrape the product info"},
{"role": "assistant", "content": response.content},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": content_block.id,
"content": tool_result
}
]
}
]
)
JavaScript Example:
const Anthropic = require('@anthropic-ai/sdk');
const { Client: MCPClient } = require('@modelcontextprotocol/sdk');
// Initialize clients
const claude = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY
});
const mcpClient = new MCPClient('http://localhost:3000');
async function scrapeWithClaudeAndMCP(url) {
// Get available tools from MCP server
const tools = await mcpClient.listTools();
// Send initial request to Claude
const message = await claude.messages.create({
model: 'claude-3-5-sonnet-20241022',
max_tokens: 1024,
tools: tools,
messages: [{
role: 'user',
content: `Extract all product information from ${url}`
}]
});
// Process tool calls
if (message.stop_reason === 'tool_use') {
const toolUse = message.content.find(block => block.type === 'tool_use');
// Execute tool via MCP
const toolResult = await mcpClient.callTool(
toolUse.name,
toolUse.input
);
// Get final response from Claude
const finalResponse = await claude.messages.create({
model: 'claude-3-5-sonnet-20241022',
max_tokens: 2048,
messages: [
{ role: 'user', content: `Extract product info from ${url}` },
{ role: 'assistant', content: message.content },
{
role: 'user',
content: [{
type: 'tool_result',
tool_use_id: toolUse.id,
content: JSON.stringify(toolResult)
}]
}
]
});
return finalResponse.content[0].text;
}
}
// Usage
scrapeWithClaudeAndMCP('https://example.com/products')
.then(data => console.log(data))
.catch(err => console.error(err));
Common MCP Server Tools for Web Scraping
Browser Automation Tools
MCP servers can expose browser automation capabilities similar to handling browser sessions in Puppeteer:
{
"name": "browser_navigate",
"description": "Navigate to a URL using headless browser",
"input_schema": {
"type": "object",
"properties": {
"url": { "type": "string" },
"wait_for": { "type": "string" },
"timeout": { "type": "number" }
},
"required": ["url"]
}
}
HTML Extraction Tools
{
"name": "extract_html",
"description": "Extract HTML content using CSS selectors",
"input_schema": {
"type": "object",
"properties": {
"selector": { "type": "string" },
"attribute": { "type": "string" },
"all": { "type": "boolean" }
},
"required": ["selector"]
}
}
Screenshot and Visual Tools
For visual analysis tasks, you can leverage Claude's vision capabilities with MCP:
{
"name": "take_screenshot",
"description": "Capture screenshot of current page",
"input_schema": {
"type": "object",
"properties": {
"full_page": { "type": "boolean" },
"element": { "type": "string" }
}
}
}
Advanced Use Cases
Dynamic Content Extraction
When working with JavaScript-heavy sites, you can combine Claude's intelligence with MCP's browser automation capabilities, similar to handling AJAX requests using Puppeteer:
async def extract_dynamic_content(url, data_description):
"""Use Claude to intelligently extract data from dynamic websites"""
response = await claude_client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=2048,
tools=mcp_tools,
messages=[{
"role": "user",
"content": f"""Navigate to {url} and extract {data_description}.
Wait for all dynamic content to load before extracting.
Return the data as structured JSON."""
}]
)
# Claude will automatically:
# 1. Navigate to the URL
# 2. Wait for content to load
# 3. Identify the right selectors
# 4. Extract and structure the data
return process_tool_results(response)
Intelligent Pagination Handling
Claude can understand pagination patterns and automate multi-page scraping:
async function scrapeAllPages(startUrl) {
const response = await claude.messages.create({
model: 'claude-3-5-sonnet-20241022',
max_tokens: 4096,
tools: mcpTools,
messages: [{
role: 'user',
content: `Scrape all products from ${startUrl} across all pagination pages.
Detect the pagination pattern and continue until no more pages exist.`
}]
});
// Claude will intelligently:
// - Identify pagination elements
// - Click through pages or construct URLs
// - Aggregate results
// - Detect when pagination ends
return await processResponse(response);
}
Error Handling and Retries
MCP servers can provide robust error handling similar to handling errors in Puppeteer:
def scrape_with_retry(url, max_retries=3):
"""Scrape with automatic retry logic through MCP"""
for attempt in range(max_retries):
try:
response = claude_client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1024,
tools=mcp_tools,
system="""If you encounter errors (timeouts, selectors not found, etc.),
analyze the error and try alternative approaches automatically.
Use different selectors, wait longer, or handle dynamic content.""",
messages=[{
"role": "user",
"content": f"Extract data from {url}"
}]
)
return process_response(response)
except Exception as e:
if attempt == max_retries - 1:
raise
time.sleep(2 ** attempt) # Exponential backoff
Best Practices
1. Tool Definition Clarity
Define MCP tools with clear descriptions and schemas:
{
"name": "scrape_table",
"description": "Extract data from HTML tables. Returns array of objects with column headers as keys.",
"input_schema": {
"type": "object",
"properties": {
"table_selector": {
"type": "string",
"description": "CSS selector for the table element"
},
"headers_row": {
"type": "number",
"description": "Row index containing headers (0-based)",
"default": 0
}
},
"required": ["table_selector"]
}
}
2. Rate Limiting and Quotas
Implement rate limiting in your MCP server:
const rateLimit = require('express-rate-limit');
const limiter = rateLimit({
windowMs: 60 * 1000, // 1 minute
max: 20, // 20 requests per minute
message: 'Too many scraping requests, please try again later'
});
app.use('/tools', limiter);
3. Caching Responses
Cache frequently accessed data to reduce API calls:
from functools import lru_cache
import hashlib
@lru_cache(maxsize=100)
def cached_scrape(url: str, selector: str):
"""Cache scraping results for repeated requests"""
cache_key = hashlib.md5(f"{url}{selector}".encode()).hexdigest()
# Check cache first
if cached_result := cache.get(cache_key):
return cached_result
# Perform scraping
result = perform_scrape(url, selector)
# Store in cache with TTL
cache.set(cache_key, result, ttl=3600)
return result
4. Security Considerations
Always validate inputs and sanitize URLs:
from urllib.parse import urlparse
def validate_scraping_request(url: str, allowed_domains: list):
"""Validate scraping requests for security"""
parsed = urlparse(url)
if parsed.scheme not in ['http', 'https']:
raise ValueError("Invalid URL scheme")
if parsed.netloc not in allowed_domains:
raise ValueError("Domain not in allowlist")
return True
Monitoring and Debugging
Logging Tool Calls
Track all tool executions for debugging:
class MCPServerWithLogging {
async callTool(toolName, toolInput) {
console.log(`[${new Date().toISOString()}] Tool called: ${toolName}`);
console.log('Input:', JSON.stringify(toolInput, null, 2));
const startTime = Date.now();
try {
const result = await this.executeTool(toolName, toolInput);
const duration = Date.now() - startTime;
console.log(`Tool completed in ${duration}ms`);
console.log('Result:', JSON.stringify(result, null, 2));
return result;
} catch (error) {
console.error(`Tool failed: ${error.message}`);
throw error;
}
}
}
Performance Metrics
Track API usage and costs:
class ClaudeAPIMetrics:
def __init__(self):
self.total_tokens = 0
self.total_requests = 0
self.tool_calls = {}
def track_request(self, response):
self.total_tokens += response.usage.input_tokens
self.total_tokens += response.usage.output_tokens
self.total_requests += 1
for content in response.content:
if content.type == "tool_use":
tool_name = content.name
self.tool_calls[tool_name] = self.tool_calls.get(tool_name, 0) + 1
def get_summary(self):
return {
"total_requests": self.total_requests,
"total_tokens": self.total_tokens,
"tool_calls": self.tool_calls,
"estimated_cost": self.calculate_cost()
}
Conclusion
The Claude API combined with MCP servers creates a powerful, flexible architecture for web scraping and data extraction. By leveraging Claude's intelligence and MCP's tool execution capabilities, developers can build sophisticated scraping systems that adapt to changing websites, handle complex scenarios, and extract structured data efficiently.
This integration enables you to move beyond static scraping scripts to intelligent agents that can understand context, make decisions, and handle edge cases automatically. Whether you're building data pipelines, monitoring competitors, or conducting research, the Claude API with MCP servers provides a robust foundation for your web scraping needs.