Table of contents

Can I use SwiftSoup with async/await in Swift?

Yes, you can absolutely use SwiftSoup with Swift's modern async/await pattern, though SwiftSoup itself is synchronous. The key is to properly integrate SwiftSoup's HTML parsing operations within async contexts, especially when fetching data from remote URLs or performing heavy parsing operations that might block the main thread.

Understanding SwiftSoup's Synchronous Nature

SwiftSoup is fundamentally a synchronous HTML parsing library. All of its parsing operations like parse(), select(), and DOM manipulation methods execute immediately on the calling thread. However, this doesn't prevent you from using it effectively in async/await workflows.

Basic Integration with Async/await

Here's how you can integrate SwiftSoup with async/await for web scraping:

import Foundation
import SwiftSoup

class AsyncWebScraper {
    func scrapeWebPage(url: String) async throws -> [String] {
        // Fetch HTML content asynchronously
        guard let url = URL(string: url) else {
            throw ScrapingError.invalidURL
        }

        let (data, _) = try await URLSession.shared.data(from: url)
        guard let html = String(data: data, encoding: .utf8) else {
            throw ScrapingError.invalidHTML
        }

        // Parse HTML with SwiftSoup (synchronous operation)
        let document = try SwiftSoup.parse(html)
        let titles = try document.select("h1, h2, h3").array().map { element in
            try element.text()
        }

        return titles
    }
}

enum ScrapingError: Error {
    case invalidURL
    case invalidHTML
    case parsingError
}

Advanced Async Patterns with SwiftSoup

1. Processing Multiple URLs Concurrently

You can leverage async/await's concurrency features to scrape multiple pages simultaneously:

class ConcurrentScraper {
    func scrapeMultiplePages(urls: [String]) async throws -> [PageData] {
        return try await withThrowingTaskGroup(of: PageData.self) { group in
            var results: [PageData] = []

            for url in urls {
                group.addTask {
                    return try await self.scrapePage(url: url)
                }
            }

            for try await result in group {
                results.append(result)
            }

            return results
        }
    }

    private func scrapePage(url: String) async throws -> PageData {
        guard let url = URL(string: url) else {
            throw ScrapingError.invalidURL
        }

        let (data, _) = try await URLSession.shared.data(from: url)
        guard let html = String(data: data, encoding: .utf8) else {
            throw ScrapingError.invalidHTML
        }

        // Heavy parsing operations with SwiftSoup
        let document = try SwiftSoup.parse(html)
        let title = try document.select("title").first()?.text() ?? ""
        let links = try document.select("a[href]").array().compactMap { element in
            try? element.attr("href")
        }

        return PageData(title: title, links: links)
    }
}

struct PageData {
    let title: String
    let links: [String]
}

2. Using Task for Background Parsing

For computationally intensive parsing operations, you can use Task to move SwiftSoup operations to background queues:

class BackgroundScraper {
    func parseHeavyDocument(html: String) async throws -> ParsedContent {
        return try await Task.detached(priority: .background) {
            let document = try SwiftSoup.parse(html)

            // Perform heavy parsing operations
            let allParagraphs = try document.select("p").array().map { element in
                try element.text()
            }

            let allImages = try document.select("img").array().compactMap { element in
                try? ImageInfo(
                    src: element.attr("src"),
                    alt: element.attr("alt")
                )
            }

            return ParsedContent(paragraphs: allParagraphs, images: allImages)
        }.value
    }
}

struct ImageInfo {
    let src: String
    let alt: String
}

struct ParsedContent {
    let paragraphs: [String]
    let images: [ImageInfo]
}

Real-World Example: News Article Scraper

Here's a comprehensive example that demonstrates async/await with SwiftSoup for scraping news articles:

import Foundation
import SwiftSoup

@MainActor
class NewsArticleScraper: ObservableObject {
    @Published var articles: [Article] = []
    @Published var isLoading = false

    func scrapeNewsWebsite(baseURL: String) async {
        isLoading = true
        defer { isLoading = false }

        do {
            // First, get the main page to find article links
            let articleURLs = try await findArticleURLs(baseURL: baseURL)

            // Then scrape each article concurrently
            let scrapedArticles = try await scrapeArticlesConcurrently(urls: articleURLs)

            self.articles = scrapedArticles
        } catch {
            print("Error scraping news: \(error)")
        }
    }

    private func findArticleURLs(baseURL: String) async throws -> [String] {
        guard let url = URL(string: baseURL) else {
            throw ScrapingError.invalidURL
        }

        let (data, _) = try await URLSession.shared.data(from: url)
        guard let html = String(data: data, encoding: .utf8) else {
            throw ScrapingError.invalidHTML
        }

        let document = try SwiftSoup.parse(html, baseURL)
        let articleLinks = try document.select("article a[href], .article-link[href]")
            .array()
            .compactMap { element in
                try? element.absUrl("href")
            }
            .filter { !$0.isEmpty }

        return Array(articleLinks.prefix(10)) // Limit to 10 articles
    }

    private func scrapeArticlesConcurrently(urls: [String]) async throws -> [Article] {
        return try await withThrowingTaskGroup(of: Article?.self) { group in
            var articles: [Article] = []

            for url in urls {
                group.addTask {
                    try? await self.scrapeIndividualArticle(url: url)
                }
            }

            for try await article in group {
                if let article = article {
                    articles.append(article)
                }
            }

            return articles.sorted { $0.title < $1.title }
        }
    }

    private func scrapeIndividualArticle(url: String) async throws -> Article {
        guard let url = URL(string: url) else {
            throw ScrapingError.invalidURL
        }

        let (data, _) = try await URLSession.shared.data(from: url)
        guard let html = String(data: data, encoding: .utf8) else {
            throw ScrapingError.invalidHTML
        }

        // Parse with SwiftSoup in background
        return try await Task.detached {
            let document = try SwiftSoup.parse(html)

            let title = try document.select("h1, .article-title, .post-title")
                .first()?.text() ?? "No Title"

            let content = try document.select("article p, .article-content p, .post-content p")
                .array()
                .map { try $0.text() }
                .joined(separator: "\n\n")

            let author = try document.select(".author, .byline, [rel=author]")
                .first()?.text() ?? "Unknown Author"

            let publishDate = try document.select("time, .publish-date, .date")
                .first()?.text() ?? ""

            return Article(
                title: title,
                content: content,
                author: author,
                publishDate: publishDate,
                url: url.absoluteString
            )
        }.value
    }
}

struct Article {
    let title: String
    let content: String
    let author: String
    let publishDate: String
    let url: String
}

Error Handling in Async SwiftSoup Operations

Proper error handling is crucial when combining async/await with SwiftSoup:

class RobustScraper {
    func safeParseHTML(html: String) async -> ParseResult {
        do {
            return try await Task.detached {
                let document = try SwiftSoup.parse(html)
                let extractedData = try self.extractData(from: document)
                return .success(extractedData)
            }.value
        } catch {
            return .failure(error)
        }
    }

    private func extractData(from document: Document) throws -> ExtractedData {
        // SwiftSoup operations that might throw
        let title = try document.select("title").first()?.text() ?? ""
        let metaDescription = try document.select("meta[name=description]")
            .first()?.attr("content") ?? ""

        return ExtractedData(title: title, description: metaDescription)
    }
}

enum ParseResult {
    case success(ExtractedData)
    case failure(Error)
}

struct ExtractedData {
    let title: String
    let description: String
}

Performance Considerations

When using SwiftSoup with async/await, consider these performance optimizations:

  1. Use Task.detached for CPU-intensive parsing: Move heavy SwiftSoup operations to background queues
  2. Batch operations: Group multiple parsing operations together when possible
  3. Limit concurrency: Don't overwhelm the system with too many concurrent parsing tasks
  4. Cache parsed results: Store frequently accessed parsed content to avoid re-parsing

Integration with Modern Swift Frameworks

SwiftSoup works seamlessly with modern Swift frameworks when used with async/await:

// SwiftUI integration
struct ContentView: View {
    @StateObject private var scraper = NewsArticleScraper()

    var body: some View {
        NavigationView {
            List(scraper.articles, id: \.url) { article in
                VStack(alignment: .leading) {
                    Text(article.title)
                        .font(.headline)
                    Text(article.author)
                        .font(.caption)
                        .foregroundColor(.secondary)
                }
            }
            .navigationTitle("News Articles")
            .task {
                await scraper.scrapeNewsWebsite(baseURL: "https://example-news-site.com")
            }
            .refreshable {
                await scraper.scrapeNewsWebsite(baseURL: "https://example-news-site.com")
            }
        }
    }
}

Best Practices for Async SwiftSoup

1. Structured Concurrency

Always use structured concurrency patterns like TaskGroup when processing multiple operations:

func processMultipleHTMLDocuments(_ htmlDocs: [String]) async throws -> [ProcessedDoc] {
    return try await withThrowingTaskGroup(of: ProcessedDoc.self) { group in
        var results: [ProcessedDoc] = []

        for (index, html) in htmlDocs.enumerated() {
            group.addTask {
                return try await Task.detached {
                    let doc = try SwiftSoup.parse(html)
                    let title = try doc.select("title").first()?.text() ?? "Untitled"
                    return ProcessedDoc(index: index, title: title)
                }.value
            }
        }

        for try await result in group {
            results.append(result)
        }

        return results.sorted { $0.index < $1.index }
    }
}

struct ProcessedDoc {
    let index: Int
    let title: String
}

2. Resource Management

Manage resources properly by limiting concurrent operations:

actor ScrapingCoordinator {
    private var activeOperations = 0
    private let maxConcurrentOperations = 5

    func requestOperationSlot() async {
        while activeOperations >= maxConcurrentOperations {
            try? await Task.sleep(nanoseconds: 100_000_000) // 100ms
        }
        activeOperations += 1
    }

    func releaseOperationSlot() {
        activeOperations = max(0, activeOperations - 1)
    }
}

Handling JavaScript-Heavy Sites

While SwiftSoup can't execute JavaScript, you can combine it with WebKit for dynamic content:

import WebKit

class WebKitScraper: NSObject, WKNavigationDelegate {
    private var webView: WKWebView!

    func scrapeJavaScriptSite(url: String) async throws -> [String] {
        return try await withCheckedThrowingContinuation { continuation in
            DispatchQueue.main.async {
                self.webView = WKWebView()
                self.webView.navigationDelegate = self

                guard let url = URL(string: url) else {
                    continuation.resume(throwing: ScrapingError.invalidURL)
                    return
                }

                self.webView.load(URLRequest(url: url))

                // Store continuation for later use in delegate
                // Implementation details depend on your specific needs
            }
        }
    }

    func webView(_ webView: WKWebView, didFinish navigation: WKNavigation!) {
        webView.evaluateJavaScript("document.documentElement.outerHTML") { html, error in
            guard let htmlString = html as? String else { return }

            Task {
                do {
                    let document = try SwiftSoup.parse(htmlString)
                    let titles = try document.select("h1, h2, h3").array().map { 
                        try $0.text() 
                    }
                    // Handle the extracted data
                } catch {
                    // Handle SwiftSoup errors
                }
            }
        }
    }
}

Conclusion

While SwiftSoup itself is synchronous, it integrates perfectly with Swift's async/await pattern. The key is to structure your code so that network operations use async/await, while SwiftSoup handles the HTML parsing. For heavy parsing operations, consider using Task.detached to move the work to background queues. This approach gives you the best of both worlds: modern asynchronous programming with powerful HTML parsing capabilities.

When building web scraping applications, similar patterns apply across different tools and languages. Just as you can effectively combine SwiftSoup with async/await in Swift, other browser automation tools like Puppeteer offer robust mechanisms for handling asynchronous operations in JavaScript environments, while tools like Puppeteer's session management provide similar architectural benefits for maintaining state across multiple operations.

Try WebScraping.AI for Your Web Scraping Needs

Looking for a powerful web scraping solution? WebScraping.AI provides an LLM-powered API that combines Chromium JavaScript rendering with rotating proxies for reliable data extraction.

Key Features:

  • AI-powered extraction: Ask questions about web pages or extract structured data fields
  • JavaScript rendering: Full Chromium browser support for dynamic content
  • Rotating proxies: Datacenter and residential proxies from multiple countries
  • Easy integration: Simple REST API with SDKs for Python, Ruby, PHP, and more
  • Reliable & scalable: Built for developers who need consistent results

Getting Started:

Get page content with AI analysis:

curl "https://api.webscraping.ai/ai/question?url=https://example.com&question=What is the main topic?&api_key=YOUR_API_KEY"

Extract structured data:

curl "https://api.webscraping.ai/ai/fields?url=https://example.com&fields[title]=Page title&fields[price]=Product price&api_key=YOUR_API_KEY"

Try in request builder

Related Questions

Get Started Now

WebScraping.AI provides rotating proxies, Chromium rendering and built-in HTML parser for web scraping
Icon